Abstract:
A surgical robot system includes a slave system to perform a surgical operation on a patient and an imaging system that includes an image capture unit including a plurality of cameras to acquire a plurality of affected area images, an image generator detecting an occluded region in each of the affected area images acquired by the plurality of cameras, removing the occluded region therefrom, warping each of the affected area images from which the occluded region is removed, and matching the affected area images to generate a final image, and a controller driving each of the plurality of cameras of the image capture unit to acquire the plurality of affected area images and inputting the acquired plurality of affected area images to the image generator to generate a final image.
Abstract:
An image processing apparatus and method may accurately separate only humans among moving objects, and also accurately separate even humans who have no motion via human segmentation using a depth data and face detection technology. The apparatus includes a face detecting unit to detect a human face in an input color image, a background model producing/updating unit to produce a background model using a depth data of an input first frame and face detection results, a candidate region extracting unit to produce a candidate region as a human body region by comparing the background model with a depth data of an input second or subsequent frame, and to extract a final candidate region by removing a region containing a moving object other than a human from the candidate region, and a human body region extracting unit to extract the human body region from the candidate region.
Abstract:
A surgical robot system includes a slave system to perform a surgical operation on a patient and an imaging system that includes an image capture unit including a plurality of cameras to acquire a plurality of affected area images, an image generator detecting an occluded region in each of the affected area images acquired by the plurality of cameras, removing the occluded region therefrom, warping each of the affected area images from which the occluded region is removed, and matching the affected area images to generate a final image, and a controller driving each of the plurality of cameras of the image capture unit to acquire the plurality of affected area images and inputting the acquired plurality of affected area images to the image generator to generate a final image.
Abstract:
Surgical trocars, and image acquisition method using the same, include a body having a passage configured to receive at least one surgical instrument, and at least one camera movably coupled to an outer wall of the body.
Abstract:
A radiographic apparatus may comprise: a radiation irradiating module configured to irradiate radiation to an object; and/or a processing module configured to automatically set a part of a region to which the radiation irradiating module is able to irradiate the radiation, to a region of interest, and further configured to determine at least one of a radiation irradiation position and a radiation irradiation zone of the radiation irradiating module based on the region of interest.
Abstract:
An augmented reality image display system may be implemented together with a surgical robot system. The surgical robot system may include a slave system performing a surgical operation, a master system controlling the surgical operation of the slave system, an imaging system generating a virtual image of the inside of a patient's body, and an augmented reality image display system including a camera capturing a real image having a plurality of markers attached to the patient's body or a human body model. The augmented reality image system may include an augmented reality image generator which detects the plurality of markers in the real image, estimates the position and gaze direction of the camera using the detected markers, and generates an augmented reality image by overlaying a region of the virtual image over the real image, and a display which displays the augmented reality image.
Abstract:
An image processing apparatus for searching for a feature point by use of a depth image and a method thereof are provided. The image processing apparatus includes an input unit configured to input a three-dimensional image having depth information, a feature point extraction unit configured to obtain a designated point from an object image extracted from the depth image to obtain a feature point that is located at a substantially farthest distance from the designated point, and to obtain other feature points that are located at substantially farthest distances from feature points that are previously obtained as well as the designated point. The apparatus includes a control unit configured to control the input unit and the feature point extraction unit so that time in estimating a structure of the object is reduced, and a recognition result is enhanced.
Abstract:
Provided are an X-ray imaging apparatus that is capable of tracking a position of an object of interest using a Kalman filter so as to reduce the amount of X-ray radiation exposure of a subject, calculating covariance indicative of accuracy of the tracing, and controlling a collimator so that the position of the object of interest and calculated covariance may be correlated with a position and an area of a region into which X-rays are radiated, and a method of controlling the X-ray imaging apparatus.
Abstract:
A face recognition apparatus and face recognition method perform face recognition of a face by comparing an image of the face to be identified with target images for identification. The face recognition apparatus includes an image input unit to receive an image of a face to be identified, a sub-image production unit to produce a plurality of sub-images of the input face image using a plurality of different face models, a storage unit to store a plurality of target images, and a face recognition unit to set the sub-images to observed nodes of a Markov network, to set the target images to hidden nodes of the Markov network, and to recognize the presence of a target image corresponding to the face images to be identified using a first relationship between the observed nodes and the hidden nodes and a second relationship between the hidden nodes.
Abstract:
An augmented reality image display system may be implemented together with a surgical robot system. The surgical robot system may include a slave system performing a surgical operation, a master system controlling the surgical operation of the slave system, an imaging system generating a virtual image of the inside of a patient's body, and an augmented reality image display system including a camera capturing a real image having a plurality of markers attached to the patient's body or a human body model. The augmented reality image system may include an augmented reality image generator which detects the plurality of markers in the real image, estimates the position and gaze direction of the camera using the detected markers, and generates an augmented reality image by overlaying a region of the virtual image over the real image, and a display which displays the augmented reality image.