Abstract:
An X-ray imaging apparatus and control method for the X-ray imaging apparatus are provided. The X-ray imaging apparatus includes an X-ray source to generate X-ray beams, and to irradiate the X-ray beams onto an object; a first X-ray detector configured to detect X-ray beams transmitted through the object and generate a first phase contrast signal; an X-ray obtainer including an X-ray collimator and a second X-ray detector, wherein the X-ray collimator is spaced apart from the object by a predetermined distance, and configured to focus the X-ray beams transmitted through the object, and wherein the second X-ray detector is configured to detect the focused X-ray beams and generate a second phase contrast signal based on the detected X-ray beams; and an image processor configured to create a phase contrast image and an absorption image of the object.
Abstract:
A calibration method of a radiation detecting apparatus, a control method of a radiation imaging apparatus and a radiation imaging apparatus are provided. The control method of the radiation imaging apparatus includes performing prior information acquisition by obtaining at least one correction threshold energy, at which a theoretical radiation intensity of at least one threshold energy is measured, and performing radiation image acquisition by obtaining at least one radiation image at the at least one threshold energy using the at least one correction threshold energy.
Abstract:
An X-ray imaging apparatus and method for controlling the X-ray imaging apparatus are provided. The X-ray imaging apparatus includes an X-ray source configured to generate and emit X-rays onto an object, an X-ray detector configured to detect the X-rays transmitted through the object and convert the X-rays into an electrical signal, a heating portion located at an upper portion of the X-ray detector configured to contact a lower part of the object, a heat transfer portion configured to transfer heat produced in the X-ray source to the heating portion, and a thermal insulation member located between the X-ray detector and the heating portion configured to block heat from being transferred to the X-ray detector.
Abstract:
Disclosed herein is an X-ray imaging apparatus including: an X-ray generator including a first X-ray source configured to irradiate a first X-ray onto an object, and at least one second X-ray source spaced apart from the first X-ray source and configured to irradiate at least one second X-ray onto the object; an X-ray detector configured to detect the first X-ray which has propagated through the object and the at least one second X-ray which has propagated through the object; and an image processor configured to produce a first X-ray image of the object based on the detected first X-ray, to produce at least one second X-ray image of the object based on the detected at least one second X-ray, and to produce a stereoscopic image of the object based on the first X-ray image and the at least one second X-ray image.
Abstract:
Disclosed herein are an X-ray detection panel, an X-ray image generating module, an X-ray imaging apparatus, and a method of generating an X-ray image. The X-ray imaging apparatus includes an X-ray generator configured to emit X-rays; an X-ray detection panel comprising a plurality of pixel groups, each pixel group configured to detect X-rays having an energy band and to convert the detected X-rays into electrical signals; and an image processor configured to acquire readout data from the electrical signals of at least one of the plurality of pixel groups, to calculate estimated data, and to generate an X-ray image by combining the readout data and the estimated data.
Abstract:
An X-ray imaging apparatus and control method for the X-ray imaging apparatus are provided. The X-ray imaging apparatus includes an X-ray source configured to generate and emit X-rays having a preset broadband, an X-ray detector including a plurality of raw pixels configured to detect an average of ten photons or less in response to the X-rays which are emitted and convert the detected photons into an electrical signal, and an image processor configured to produce a plurality of single-energy images corresponding respectively to a plurality of preset energy bands by separating the plurality of raw pixels for each of the plurality of preset energy bands based on the electrical signal, and to produce a multi-energy image using the single-energy images.
Abstract:
Disclosed are an X-ray imaging apparatus that captures one or more images of an inner part of the human body or the like, and a method for controlling the apparatus. In particular, an imaging system includes an X-ray generator which is configured to irradiate a target object with X-rays, a detector which is configured to detect X-rays which are emitted at a plurality of times and which have propagated through the target object, a driver which is configured to change a position of the X-ray generator or the detector, an image processor which is configured to generate a plurality of X-ray images from the detected X-rays and to compare the plurality of X-ray images in order to generate at least one difference image, and a controller which is configured to detect tissues which constitute the target object based on the at least one difference image.
Abstract:
The X-ray imaging apparatus to form a phase contrast image includes an X-ray source that generates X-rays to emit the X-rays to an object; an X-ray detector configured to detect X-rays having passed through the object to acquire phase contrast image signals on a per energy band basis; and a quantitative data acquirer configured to calculate approximate quantitative data of two or more constituent substances of the object using a relation between the phase contrast image signals on the per energy band basis and quantitative data of the constituent substances, and estimate quantitative data of the constituent substances by iteratively applying a regularization function to the approximate quantitative data.
Abstract:
Provided is an apparatus for spectrum estimation. The apparatus includes a threshold setter which sets at least one threshold in order to separate a spectrum into at least one energy bin; a reference value setter which sets one of the at least one threshold as a reference threshold; a threshold adjuster which adjusts the at least one threshold based on a predetermined condition; a comparer which compares the reference threshold with the adjusted threshold; and an output unit which outputs a spectrum in which the adjusted threshold is set, when a value which is determined based on the comparison result corresponds to a predetermined maximum value.
Abstract:
An X-ray imaging apparatus includes an X-ray generator configured to generate and emit X-rays, an X-ray detector configured to detect the X-rays and count a number of photons having energy equal to or greater than threshold energy per pixel among photons contained in the detected X-rays, a map generator configured to extract corrected threshold energy corresponding to target threshold energy mapped to each pixel, and a data correction unit configured to calculate corrected X-ray data corresponding to the corrected threshold energy per pixel from a plurality of X-ray data acquired based on a plurality of images of a target object obtained by using a plurality of approximate energies equal or approximate to the target threshold energy as threshold energy of the X-ray detector.