Abstract:
A method of controlling of an R-peak detection apparatus, which detects an R-peak from an ElectroCardioGram (ECG) signal, includes receiving the ECG signal, reading out a pre-stored ECG template, comparing the EG signal with the pre-stored ECG template to determine a similarity between the ECG signal and the pre-stored ECG template and determining whether the similarity is equal to or greater than a threshold value, and determining a corresponding interval as the R-peak when the similarity is equal to or greater than the threshold value.
Abstract:
An example method of an electronic device according to various embodiments of the present disclosure may include indicating that a first screen related to a first application operating in a background state is being displayed in an external electronic device, connected to the electronic device, based on data transmitted from the electronic device; and displaying an object floating on a second screen being displayed on the electronic device.
Abstract:
A method of an electronic device according to various embodiments of the present disclosure may comprise the operations of: indicating that a first screen related to a first application operating in a background state is being displayed in an external electronic device, connected to the electronic device, on the basis of data transmitted from the electronic device; and displaying an object floating on a second screen being displayed on the electronic device.
Abstract:
An apparatus and method for easily and accurately measuring a biological signal by using a wristwatch-type measurement module. After a band of the wristwatch-type measurement module is tightened to wear on a user's wrist, the band is further tightened to make the wristwatch-type measurement module closely contact the user's wrist. An operation mode of the wristwatch-type measurement module closely contacting the user's wrist is switched from a normal mode to a measurement mode, and a user's biological signal is measured from the user's wrist through the wristwatch-type measurement module in the measurement mode. The user's biological signal is then displayed through the wristwatch-type measurement module.
Abstract:
A voltage controlled oscillator (VCO) includes an oscillation frequency signal generation circuit and a transconductance control circuit. The oscillation frequency signal generation circuit has a first transconductance and generates a first oscillation frequency signal and a second oscillation frequency signal based on a voltage control signal and a power supply voltage. The first and second oscillation frequency signals are a pair of differential signals. The oscillation frequency signal generation circuit is configured to output the first oscillation frequency signal from a first output node. The oscillation frequency signal generation circuit is configured to output the second oscillation frequency signal from a second output node. The transconductance control circuit is connected to the first and second output nodes and has a second transconductance. The transconductance control circuit is configured to adjust the second transconductance based on a digital control signal.
Abstract:
A method of controlling of an R-peak detection apparatus, which detects an R-peak from an ElectroCardioGram (ECG) signal, includes receiving the ECG signal, reading out a pre-stored ECG template, comparing the EG signal with the pre-stored ECG template to determine a similarity between the ECG signal and the pre-stored ECG template and determining whether the similarity is equal to or greater than a threshold value, and determining a corresponding interval as the R-peak when the similarity is equal to or greater than the threshold value.