Abstract:
A mobile station is configured to scan cells in a wireless network. The mobile station includes at least one antenna configured to transmit and receive wireless signals. The mobile station also includes a processor coupled to the at least one antenna, the processor configured to scan for one or more neighboring base station cells in a same frequency band as a serving base station cell using one or more receive beams. The one or more receive beams used for scanning are different than receive beams used for data communication with the serving base station cell.
Abstract:
A base station enables a mobile station to employ a random access retransmission scheme in a wireless communication network. The mobile station includes a plurality of antennas configured to communicate with the base station. The mobile station also includes a processing circuitry coupled to the plurality of antennas. The processing circuitry is configured to perform a random access during a random access channel (RACH) burst. The processing circuitry also is configured to at least one of: transmit a random access signal with at least one of an initial transmit power level and an initial transmit beamwidth, and, in response to a random access attempt failure, change at least one of a transmit (Tx) power level and a Tx beamwidth and retransmit the random access signal.
Abstract:
A base station enables a mobile station to employ a random access retransmission scheme in a wireless communication network. The mobile station includes a plurality of antennas configured to communicate with the base station. The mobile station also includes a processing circuitry coupled to the plurality of antennas. The processing circuitry is configured to perform a random access during a random access channel (RACH) burst. The processing circuitry also is configured to at least one of: transmit a random access signal with at least one of an initial transmit power level and an initial transmit beamwidth, and, in response to a random access attempt failure, change at least one of a transmit (Tx) power level and a Tx beamwidth and retransmit the random access signal.
Abstract:
A base station transmits energy related information to a mobile station, wherein the energy related information is related to at least one of an energy harvester module and an energy storage module coupled to the base station. The energy related information includes: an energy level and a maximum storage capacity of the energy storage module; an energy harvest rate and energy consumption rate. The base station and the mobile station perform energy trade off, where when the serving base station has an energy level below a threshold, the mobile station uses certain configuration to send information to the serving base station where the configuration can use more resources, such as RF chains, thereby increasing energy consumption of the mobile station while enabling the base station to conserve energy.
Abstract:
A mobile station performs a method for random access in a wireless network. The method includes receiving, from a base station, information regarding a configuration of at least one receive beam of the base station to receive a random access signal. The method also includes configuring at least one transmit beam for a transmission of the random access signal based on the configuration information from the base station. The method further includes transmitting the random access signal to the base station on the at least one transmit beam.
Abstract:
A mobile station performs a method for random access in a wireless network. The method includes receiving, from a base station, information regarding a configuration of at least one receive beam of the base station to receive a random access signal. The method also includes configuring at least one transmit beam for a transmission of the random access signal based on the configuration information from the base station. The method further includes transmitting the random access signal to the base station on the at least one transmit beam.
Abstract:
A base station transmits energy related information to a mobile station, wherein the energy related information is related to at least one of an energy harvester module and an energy storage module coupled to the base station. The energy related information includes: an energy level and a maximum storage capacity of the energy storage module; an energy harvest rate and energy consumption rate. The base station and the mobile station perform energy trade off, where when the serving base station has an energy level below a threshold, the mobile station uses certain configuration to send information to the serving base station where the configuration can use more resources, such as RF chains, thereby increasing energy consumption of the mobile station while enabling the base station to conserve energy.
Abstract:
A base stations (BS) are configured to perform a coordinated transmission to at least one user equipment (UE). The BS includes a plurality of antenna configured to communicate with the UE. The BS also includes processing circuitry coupled to the plurality of antennas and configured to transmit physical downlink control channel (PDCCH) to the at least one user equipment. The UE includes a plurality of antennas configured to communicate with the BS. The UE also includes a processing circuitry coupled to the plurality of antennas and configured to receive PDCCH from the BS. The PDCCH is included in one or more transmit (Tx) beams. A Tx beam is defined by the cell specific reference signal (CRS) transmitted through the Tx beam. A Tx beam is configured to carry a beam identifier, and the PDCCH is configured to include resource allocation information for the user equipment.
Abstract:
A mobile station is configured to scan cells in a wireless network. The mobile station includes at least one antenna configured to transmit and receive wireless signals. The mobile station also includes a processor coupled to the at least one antenna, the processor configured to scan for one or more neighboring base station cells in a same frequency band as a serving base station cell using one or more receive beams. The one or more receive beams used for scanning are different than receive beams used for data communication with the serving base station cell.