Abstract:
Disclosed is a complementary metal oxide semiconductor (CMOS) image sensor. The image sensor comprises a first separation zone in a substrate, the first separation zone defining first and second pixel regions arranged in a first direction, the first separation zone including first parts substantially parallel extending in the first direction, and the substrate including a first active region vertically overlapping one of the first parts and a second active region vertically overlapping another of the first parts. The image sensor further comprises first and second photoelectric conversion devices arranged in the first direction on at least one of the first and second pixel regions in the substrate, and a source follower gate on the first active region of the substrate.
Abstract:
An image sensor includes a photoelectric converter to generate charges in response to incident light and to provide the generated charges to a first node, a transfer transistor to provide a voltage of the first node to a floating diffusion node based on a first control signal, a source follower transistor to provide a voltage of the floating diffusion node as a unit pixel output, a correlated double sampler (CDS) to receive the unit pixel output and to convert the unit pixel output into a digital code. The first control signal having first, second, and third voltages is maintained at the second voltage in a period between when the voltage of the first node is provided to the floating diffusion node and when the CDS is provided with the voltage of the first node as the unit pixel output.
Abstract:
Disclosed is a complementary metal oxide semiconductor (CMOS) image sensor. The image sensor comprises a first separation zone in a substrate, the first separation zone defining first and second pixel regions arranged in a first direction, the first separation zone including first parts substantially parallel extending in the first direction, and the substrate including a first active region vertically overlapping one of the first parts and a second active region vertically overlapping another of the first parts. The image sensor further comprises first and second photoelectric conversion devices arranged in the first direction on at least one of the first and second pixel regions in the substrate, and a source follower gate on the first active region of the substrate.
Abstract:
Disclosed is a complementary metal oxide semiconductor (CMOS) image sensor. The image sensor comprises a first separation zone in a substrate, the first separation zone defining first and second pixel regions arranged in a first direction, the first separation zone including first parts substantially parallel extending in the first direction, and the substrate including a first active region vertically overlapping one of the first parts and a second active region vertically overlapping another of the first parts. The image sensor further comprises first and second photoelectric conversion devices arranged in the first direction on at least one of the first and second pixel regions in the substrate, and a source follower gate on the first active region of the substrate.
Abstract:
An image sensor is provided. The image sensor includes a substrate in which a first photoelectric conversion element is disposed, the substrate having a first surface and a second surface opposite the first surface, pixel separation patterns extending from the first surface of the substrate into the substrate, surrounding the first photoelectric conversion element, and defining a first pixel region in the substrate, a first vertical gate structure which extends in the first pixel region from the first surface of the substrate into the substrate and comprises a first portion disposed in the substrate and a second portion disposed on the first surface of the substrate, a second vertical gate structure which extends in the first pixel region from the first surface of the substrate into the substrate and comprises a first portion disposed in the substrate and a second portion disposed on the first surface of the substrate.
Abstract:
Disclosed is a complementary metal oxide semiconductor (CMOS) image sensor. The image sensor comprises a first separation zone in a substrate, the first separation zone defining first and second pixel regions arranged in a first direction, the first separation zone including first parts substantially parallel extending in the first direction, and the substrate including a first active region vertically overlapping one of the first parts and a second active region vertically overlapping another of the first parts. The image sensor further comprises first and second photoelectric conversion devices arranged in the first direction on at least one of the first and second pixel regions in the substrate, and a source follower gate on the first active region of the substrate.
Abstract:
Disclosed is a complementary metal oxide semiconductor (CMOS) image sensor. The image sensor comprises a first separation zone in a substrate, the first separation zone defining first and second pixel regions arranged in a first direction, the first separation zone including first parts substantially parallel extending in the first direction, and the substrate including a first active region vertically overlapping one of the first parts and a second active region vertically overlapping another of the first parts. The image sensor further comprises first and second photoelectric conversion devices arranged in the first direction on at least one of the first and second pixel regions in the substrate, and a source follower gate on the first active region of the substrate.
Abstract:
An image sensor according to an example embodiment of includes a first pixel and a second pixel in a first row. The first pixel includes a first photoelectric conversion element at a first depth in a semiconductor substrate and the first photoelectric conversion element is configured to convert a first visible light spectrum into a first photo charge, and the second pixel includes a second photoelectric conversion element at a second depth from the first depth in the semiconductor substrate, the second photoelectric conversion element is at least partially overlapped by the first photoelectric conversion element in a vertical direction, and the second photoelectric conversion element is configured to convert a second visible light spectrum into a second photo charge.
Abstract:
A 3D image sensor includes a first color filter configured to pass wavelengths of a first region of visible light and wavelengths of infrared light; a second color filter configured to pass wavelengths of a second region of visible light and the wavelengths of infrared light; and an infrared sensor configured to detect the wavelengths of infrared light passed through the first color filter.
Abstract:
An image sensor according to the present disclosure includes: a first pixel group, which includes a first pixel unit corresponding to a first color, and a plurality of first pixels arranged with an m×n form. The image sensor further includes a second pixel unit, which corresponds to a second color, and a plurality of second pixels arranged with the m×n form. The image sensor further includes a third pixel unit, which corresponds to a third color, and a plurality of third pixels arranged with the m×n form, and m and n are natural numbers greater than or equal to 3. A first micro lens is formed on the first pixel unit and shared by at least two adjacent first pixels in a first direction among the plurality of first pixels.