Abstract:
An organic light emitting display device is disclosed. One inventive aspect includes a plurality of pixels provided at a region sectioned by scan lines and data lines and an initialization power unit. The plurality of pixels are configured to control the amount of a current flowing from a first power source to a second power source through an organic light emitting diode in response to a data signal. The initialization power unit supplies initialization power to a driving transistor within each pixel circuit. The initialization power unit further controls the voltage of the initialization power supply to maintain a substantially constant voltage difference between the second power source and the initialization power.
Abstract:
A maskless exposure device includes an exposure head including a digital micro-mirror device and an exposure source, the digital micro-mirror device being configured to reflect a source beam outputted from the exposure source to a substrate and a system controller configured to control the digital micro-mirror device by using a graphic data system file. The graphic data system file includes data regarding patterns to be formed on the substrate. A pattern extending in a direction parallel to a scan direction of the exposure head includes a first pattern portion having a first width that is greater than a target width and a second pattern portion alternately disposed with the first pattern portion and having a second width that is less than the target width.
Abstract:
A maskless exposure device includes an exposure head including a digital micro-mirror device, the digital micro-mirror device being configured to scan an exposure beam to a substrate by reflecting a source beam from an exposure source; and a system control part configured to control the digital micro-mirror device by utilizing a graphic data system file. The graphic data system file includes data for a source electrode, a drain electrode and a channel portion between the source electrode and the drain electrode in a plan view. The channel portion includes a first portion extending in a direction perpendicular to a scan direction of the exposure head. A width of the first portion of the channel portion is defined to be a multiple of a pulse event generation of the exposure beam.
Abstract:
A maskless exposure device includes an exposure head including a digital micro-mirror device. The digital micro-mirror device is configured to transmit a source beam applied from an exposure source to a substrate. A system control part is configured to control the digital micro-mirror device by using a graphic data system file. The graphic data system file includes data for forming a source electrode, a drain electrode and a channel portion disposed between the source electrode and the drain electrode. The graphic system file includes data for forming the channel portion extending in a diagonal direction with respect to a scan direction of the exposure head.
Abstract:
A maskless exposure device includes an exposure head including a digital micro-mirror device and an exposure source, the digital micro-mirror device being configured to reflect a source beam outputted from the exposure source to a substrate and a system controller configured to control the digital micro-mirror device by using a graphic data system file. The graphic data system file includes data regarding patterns to be formed on the substrate. A pattern extending in a direction parallel to a scan direction of the exposure head includes a first pattern portion having a first width that is greater than a target width and a second pattern portion alternately disposed with the first pattern portion and having a second width that is less than the target width.
Abstract:
An organic light emitting display device is disclosed. One inventive aspect includes a plurality of pixels provided at a region sectioned by scan lines and data lines and an initialization power unit. The plurality of pixels are configured to control the amount of a current flowing from a first power source to a second power source through an organic light emitting diode in response to a data signal. The initialization power unit supplies initialization power to a driving transistor within each pixel circuit. The initialization power unit further controls the voltage of the initialization power supply to maintain a substantially constant voltage difference between the second power source and the initialization power.
Abstract:
A maskless exposure device includes a stage on which a substrate is disposed, an optical head, and an optical source part. The optical head irradiates light to the substrate. The light source part provides the optical head with a light. The optical head irradiates the light, according to an average-focus distance, to the substrate. The average-focus distance is determined by averaging best-focus distances for a plurality of regions of the substrate, respectively.
Abstract:
A maskless exposure device includes an exposure head including a digital micro-mirror device, the digital micro-mirror device being configured to scan an exposure beam to a substrate by reflecting a source beam from an exposure source; and a system control part configured to control the digital micro-mirror device by utilizing a graphic data system file. The graphic data system file includes data for a source electrode, a drain electrode and a channel portion between the source electrode and the drain electrode in a plan view. The channel portion includes a first portion extending in a direction perpendicular to a scan direction of the exposure head. A width of the first portion of the channel portion is defined to be a multiple of a pulse event generation of the exposure beam.
Abstract:
An organic light emitting display device is disclosed. One inventive aspect includes a plurality of pixels provided at a region sectioned by scan lines and data lines and an initialization power unit. The plurality of pixels are configured to control the amount of a current flowing from a first power source to a second power source through an organic light emitting diode in response to a data signal. The initialization power unit supplies initialization power to a driving transistor within each pixel circuit. The initialization power unit further controls the voltage of the initialization power supply to maintain a substantially constant voltage difference between the second power source and the initialization power.