Abstract:
A display device includes a display panel including pixels; and a timing controller to calculate a grayscale usage ratio of input data and to determine an automatic-current-limit rate based on the grayscale usage ratio, the automatic-current-limit rate representing a power saving rate.
Abstract:
A display device includes: a display unit including pixels including a first color subpixel at a left upper end, a second color subpixel at a left lower end, and a third color subpixel at a right side; a data converter to convert first color, second color, and third color unit input data into first color, second color, and third color unit adapted data; and a driver to apply an image signal to the pixel based on the adapted data, the data converter generating unit adapted data using first unit input data of a target subpixel and second unit input data of another subpixel adjacent the target subpixel along a direction, the direction being: an up direction when the target subpixel is the first color subpixel; a down direction when the target subpixel is the second color subpixel; and a right direction when the target subpixel is the third color subpixel.
Abstract:
A method of compensating for Mura in a display panel includes displaying a high gray-scale image and a low gray-scale image on a display panel. The displayed images are photographed to generate a high gray-scale luminance image and a low gray-scale luminance image. An ELA Mura for-measurement image having moiré-removed luminance values is generated by dividing luminance values of the low gray-scale luminance image by luminance values of the high gray-scale luminance image. One-dimensional average data is obtained from the ELA Mura for-measurement image. The one-dimensional average data is transformed into frequency-domain data. Target frequency-domain data having a maximum peak value is identified from the frequency-domain data. A direction, an intensity, and a frequency of the ELA Mura are obtained from the target frequency-domain data. A filter is determined based on the obtained information. The filter is applied to image data.
Abstract:
A display device includes: a display unit configured to display an image; a camera spaced apart from the display unit and facing a front side of the display device; a photo sensor spaced apart from the camera and configured to sense ambient light incident on the front side of the display device; and a control unit coupled to the display unit, the camera, and the photo sensor. The control unit includes: a viewing angle determining unit configured to recognize a face of a user from an image photographed by the camera so as to determine a viewing angle of the user; a reflection intensity calculating unit configured to calculate intensity of reflected light based on intensity of symmetric light incident at an angle symmetric to the viewing angle; and a luminance compensation unit configured to compensate luminance of input video data in consideration of the intensity of the reflected light.
Abstract:
A color gamut controlling device and a display device including the color gamut controlling device. The color gamut controlling device includes a light sensing unit, a first calculation unit, a second calculation unit, and a color gamut calculation unit. The light sensing unit measures a luminance of external light. The first calculation unit calculates adjusted tristimulus values for each of three primary colors based on the measured luminance. The second calculation unit calculates final tristimulus values for each of the three primary colors using the adjusted tristimulus values and target tristimulus values for each of the three primary colors. The color gamut calculation unit calculates a corrected color gamut from the final tristimulus values. The light sensing unit may further measure tristimulus values of the external light for each of the three primary colors.
Abstract:
An image display method is disclosed. In one aspect, the image display method includes receiving image data including a black region and a white region, determining a boundary between the black and white regions, determining a pixel to be corrected which is adjacent to the boundary, and determining a direction of the boundary and an arrangement of the black and white regions with respect to the boundary. The method also includes converting pixel data corresponding to the pixel into corrected pixel data based at least in part on the boundary direction and the arrangement and displaying images on a display device based at least in part on corrected image data including the corrected pixel data.
Abstract:
A display device includes a light sensor, a controller, a data driver, and a scan driver. The controller is configured to correct an input image signal based on an electrical signal output by the light sensor and an input image signal, the controller includes: a first color coordinate calculation unit configured to calculate a color coordinate of reflected light; a second color coordinate calculation unit configured to calculate a color coordinate of dark room output light for at least two grayscale value sections; a combination unit configured to combine the reflected light color coordinate and the dark room output light color coordinate together; and a gamma value setting unit configured to set a gamma value based on a deviation between the combination light color coordinate output by the combination unit and a reference color coordinate.
Abstract:
An organic light-emitting display device including a first organic light-emitting device including a first pixel electrode, a first organic emission layer (EML) for emitting white light, and an opposite electrode; a first color filter between an insulating layer and the first pixel electrode, and transmitting blue light; a second organic light-emitting device including a second pixel electrode, the first organic EML for emitting white light, and the opposite electrode; a second color filter between the insulating layer and the second pixel electrode, and transmitting green light; a third organic light-emitting device including a third pixel electrode, a second organic EML for emitting a mixture light including a red color and a blue color, and the opposite electrode; and a third color filter between the insulating layer and the third pixel electrode, and including a first region for transmitting red light and a second region for transmitting the mixture light.
Abstract:
A display device includes: a display unit configured to display an image; a camera spaced apart from the display unit and facing a front side of the display device; a photo sensor spaced apart from the camera and configured to sense ambient light incident on the front side of the display device; and a control unit coupled to the display unit, the camera, and the photo sensor. The control unit includes: a viewing angle determining unit configured to recognize a face of a user from an image photographed by the camera so as to determine a viewing angle of the user; a reflection intensity calculating unit configured to calculate intensity of reflected light based on intensity of symmetric light incident at an angle symmetric to the viewing angle; and a luminance compensation unit configured to compensate luminance of input video data in consideration of the intensity of the reflected light.
Abstract:
A color gamut controlling device and a display device including the color gamut controlling device. The color gamut controlling device includes a light sensing unit, a first calculation unit, a second calculation unit, and a color gamut calculation unit. The light sensing unit measures a luminance of external light. The first calculation unit calculates adjusted tristimulus values for each of three primary colors based on the measured luminance. The second calculation unit calculates final tristimulus values for each of the three primary colors using the adjusted tristimulus values and target tristimulus values for each of the three primary colors. The color gamut calculation unit calculates a corrected color gamut from the final tristimulus values. The light sensing unit may further measure tristimulus values of the external light for each of the three primary colors.