Abstract:
A method of manufacturing an organic light-emitting display apparatus includes: forming a pixel electrode on a substrate; forming a pixel-defining layer (PDL) having an opening exposing at least a part of the pixel electrode; forming an intermediate layer including a central portion disposed on the pixel electrode, an edge portion that extends from the central portion and contacts the PDL, at least one common layer, and an organic emission layer; forming a protective layer including a central portion disposed on the central portion of the intermediate layer and an edge portion that extends from the central portion of the protective layer and contacts the PDL; and forming an opposite electrode on the PDL, the opposite electrode having an opening exposing at least a part of the protective layer and electrically connected to the protective layer.
Abstract:
A display device including a first pixel electrode and a second pixel electrode disposed adjacent to each other on a substrate; a pixel defining layer including a first opening corresponding to the first pixel electrode, a second opening corresponding to the second pixel electrode, and a first convex portion arranged adjacent to the first opening; a first intermediate layer arranged on the first pixel electrode to correspond to the first opening and including a first emission layer; and a first conductive inorganic layer arranged on the first intermediate layer to correspond to the first opening. At least one end of the first conductive inorganic layer extends beyond an end of the first intermediate layer and is disposed on the pixel defining layer between the first opening and the second opening.
Abstract:
A donor substrate includes a base substrate; a light reflection layer disposed on the base substrate and overlapped with a portion of the base substrate, a heat blocking pattern disposed on the light reflection layer, overlapped with the light reflection layer, and including a plurality of air holes; a light-to-heat conversion layer disposed on the base substrate; and a transfer layer disposed on the light-to-heat conversion layer.
Abstract:
A donor substrate includes a base substrate; a light reflection layer on the base substrate and partially overlapping the base substrate; a light-to-heat conversion layer on the base substrate, and including a combination layer including an insulating material and a first metal material; and a transfer layer on the light-to-heat conversion layer. A ratio of the first metal material in the combination layer to the insulating material in the combination layer increases as a distance from the base substrate increases along a thickness direction of the light-to-heat conversion layer.
Abstract:
A method of manufacturing an organic light-emitting display apparatus including forming a lift-off layer on a substrate including a first electrode, the lift-off layer including a fluoropolymer; sequentially forming a barrier layer and a photoresist on the lift-off layer, the barrier layer including an inorganic material; patterning the photoresist and the barrier layer to remove a first portion of the photoresist corresponding to the first electrode such that a second portion other than the first portion remains; etching a portion of the lift-off layer corresponding to the first portion to expose the first electrode; forming an organic functional layer and an auxiliary electrode over the first electrode and the second portion of the photoresist, the organic functional layer including an emission layer; and removing the lift-off layer, the barrier layer, the photoresist, the organic functional layer, and the auxiliary electrode remaining on the second portion.
Abstract:
An organic light-emitting display apparatus including a substrate; a pixel electrode on the substrate; a pixel-defining layer including an opening exposing at least a portion of the pixel electrode; an intermediate layer including a center area on the pixel electrode and a side area extending from the center area and arranged on the pixel-defining layer, the intermediate layer including one or more common layers and an emission layer; a protective layer covering top surfaces of the center area and the side area of the intermediate layer and exposing at least a portion of the pixel-defining layer; and an opposite electrode spaced apart from the intermediate layer by the protective layer and arranged on the protective layer and portions of the pixel-defining layer, the portions being exposed by the protective layer.
Abstract:
A display device including a first pixel electrode and a second pixel electrode disposed adjacent to each other on a substrate; a pixel defining layer including a first opening corresponding to the first pixel electrode, a second opening corresponding to the second pixel electrode, and a first convex portion arranged adjacent to the first opening; a first intermediate layer arranged on the first pixel electrode to correspond to the first opening and including a first emission layer; and a first conductive inorganic layer arranged on the first intermediate layer to correspond to the first opening. At least one end of the first conductive inorganic layer extends beyond an end of the first intermediate layer and is disposed on the pixel defining layer between the first opening and the second opening.
Abstract:
An organic light-emitting display apparatus includes a substrate, a pixel electrode disposed on the substrate, a pixel-defining layer (PDL) disposed on the pixel electrode and having an opening exposing at least a part of the pixel electrode, an intermediate layer, a protective layer, and an opposite electrode be disposed on the PDL and having an opening exposing at least a part of the protective layer, wherein the opposite electrode is electrically connected to the protective layer. The intermediate layer may include a central portion disposed on the pixel electrode, an edge portion that extends from the central portion and contacts the PDL, at least one common layer, and an organic emission layer. The protective layer may include a central portion disposed on the central portion of the intermediate layer and an edge portion that extends from the central portion of the protective layer.
Abstract:
An electrostatic chuck system includes an electrostatic chuck with a plurality of unit chucks supporting a display substrate, an optical photomask on the display substrate, the optical photomask having a material to be transferred onto the display substrate, a light source on the optical photomask, a gap measuring meter for measuring a gap between the display substrate and the optical photomask, a power source unit for applying power to each of the plurality of unit chucks through variable resistance units respectively connected to the plurality of unit chucks, and a control unit electrically connected to the gap measuring meter, the variable resistance units, and the power source unit, and transmits a signal for adjusting the gap.
Abstract:
An organic light-emitting display apparatus including a substrate; a pixel electrode on the substrate; a pixel-defining layer including an opening exposing at least a portion of the pixel electrode; an intermediate layer including a center area on the pixel electrode and a side area extending from the center area and arranged on the pixel-defining layer, the intermediate layer including one or more common layers and an emission layer; a protective layer covering top surfaces of the center area and the side area of the intermediate layer and exposing at least a portion of the pixel-defining layer; and an opposite electrode spaced apart from the intermediate layer by the protective layer and arranged on the protective layer and portions of the pixel-defining layer, the portions being exposed by the protective layer.