Abstract:
According to an exemplary embodiment, a backlight unit includes a plurality of light emitting strings, and a driving controller configured to detect source voltages of a plurality of light transistors provided in the light emitting strings. The driving controller is further configured to compare a source voltage of each of the light transistors with an overcurrent protection voltage and to turn off an operation of a corresponding light transistor having a source voltage level higher than the overcurrent protection voltage. The backlight unit further includes a first comparator configured to compare the source voltage of the corresponding light transistor with a reference source voltage to output a feedback voltage according to the compared result; and a first switch configured to electrically connect the first comparator to a gate terminal of the corresponding light transistor, wherein the first switch operates in response to an overcurrent protection signal.
Abstract:
A display device includes: a first data driving chip including: a first data driving circuit to generate a first data signal; and a first sensor to sense a first overcurrent flowing in the first data driving circuit based on a first power current flowing in the first data driving circuit to generate a first signal; a second data driving chip including: a second data driving circuit to generate a second data signal; and a second sensor to sense a second overcurrent flowing in the second data driving circuit based on a second power current flowing in the second data driving circuit to generate a second signal; and a power controller to control first and second powers respectively supplied to the first and second data driving chips, and to block at least one of the first and second powers based on at least one of the first and second signals.
Abstract:
A display device includes: a first data driving chip including: a first data driving circuit to generate a first data signal; and a first sensor to sense a first overcurrent flowing in the first data driving circuit based on a first power current flowing in the first data driving circuit to generate a first signal; a second data driving chip including: a second data driving circuit to generate a second data signal; and a second sensor to sense a second overcurrent flowing in the second data driving circuit based on a second power current flowing in the second data driving circuit to generate a second signal; and a power controller to control first and second powers respectively supplied to the first and second data driving chips, and to block at least one of the first and second powers based on at least one of the first and second signals.
Abstract:
A display device includes: a display panel including data lines, gate lines, and pixels, the display panel is operated in an active period or in a blank period; and a driving circuit for driving the display panel, the driving circuit including: a signal controller for outputting clock control signals; a voltage generator for receiving the clock control signals, wherein the voltage generator outputs active clock signals synchronized with the clock control signals during the active period and outputs blank clock signals during the blank period; and an overcurrent detection circuit for receiving the clock control signals and the blank clock signals, the overcurrent detection circuit detects an overcurrent of the blank clock signals, and a phase difference between the clock control signals in the active period is different from a phase difference between the clock control signals in the blank period.
Abstract:
A display apparatus includes a plurality of pixels for receiving a plurality of gate signals, and a plurality of data voltages, a level shifter for receiving a gate driving voltage and a plurality of gate control clocks to generate a plurality of reference clocks, and for generating a plurality of control clocks by delaying the reference clocks by a predetermined time, a gate driver for outputting the gate signals in response to the control clocks, a short circuit protector for sensing a current of each control clock at each falling edge of each gate control clock to detect a static current of the each control clock, and for outputting a shut-down signal based on a count of the static current detection, and a voltage generator for providing the gate driving voltage to the level shifter, and shutting down in response to the shut-down signal.
Abstract:
A display device includes: a first data driving chip including: a first data driving circuit to generate a first data signal; and a first sensor to sense a first overcurrent flowing in the first data driving circuit based on a first power current flowing in the first data driving circuit to generate a first signal; a second data driving chip including: a second data driving circuit to generate a second data signal; and a second sensor to sense a second overcurrent flowing in the second data driving circuit based on a second power current flowing in the second data driving circuit to generate a second signal; and a power controller to control first and second powers respectively supplied to the first and second data driving chips, and to block at least one of the first and second powers based on at least one of the first and second signals.
Abstract:
A display device includes: a first data driving chip including: a first data driving circuit to generate a first data signal; and a first sensor to sense a first overcurrent flowing in the first data driving circuit based on a first power current flowing in the first data driving circuit to generate a first signal; a second data driving chip including: a second data driving circuit to generate a second data signal; and a second sensor to sense a second overcurrent flowing in the second data driving circuit based on a second power current flowing in the second data driving circuit to generate a second signal; and a power controller to control first and second powers respectively supplied to the first and second data driving chips, and to block at least one of the first and second powers based on at least one of the first and second signals.
Abstract:
A backlight unit includes a light source part, a DC/DC converter, and a light source driving circuit. The DC/DC converter receives an input voltage and provides a driving voltage to the light source part. The light source driving circuit receives an analog voltage, generates a clamping voltage on the basis of the analog voltage, and generates a main driving signal applied to the DC/DC converter on the basis of the analog voltage and the clamping voltage. The light source driving circuit decreases a duty ratio of the main driving signal when the analog voltage is equal to or lower than a reference voltage.
Abstract:
A display device includes: a display panel including data lines, gate lines, and pixels, the display panel is operated in an active period or in a blank period; and a driving circuit for driving the display panel, the driving circuit including: a signal controller for outputting clock control signals; a voltage generator for receiving the clock control signals, wherein the voltage generator outputs active clock signals synchronized with the clock control signals during the active period and outputs blank clock signals during the blank period; and an overcurrent detection circuit for receiving the clock control signals and the blank clock signals, the overcurrent detection circuit detects an overcurrent of the blank clock signals, and a phase difference between the clock control signals in the active period is different from a phase difference between the clock control signals in the blank period.
Abstract:
A data driver of a display device includes an equalizer and an equalizer controller. The equalizer controller calculates a lock time during a training enable signal is in an active state while sequentially changing a set signal applied to the equalizer to one option code selected from among a plurality of option codes and provides an option code corresponding to a set lock time among the option codes to the equalizer as the set signal.