Abstract:
An organic light-emitting display apparatus includes a substrate, a first electrode disposed on the substrate, a pixel-defining layer which is disposed on the substrate and the first electrode and in which an opening which exposes a central part of the first electrode is defined, an interlayer which is disposed on the first electrode and comprises an organic light-emitting layer; and a second electrode disposed on the interlayer, where a sidewall of the opening comprises a bumpy structure in which a plurality of bumps is disposed.
Abstract:
A backlight assembly having a light emitting module and a lower receiving container, the light emitting module including a first light source configured to generate a first light and a quantum dot rail configured to generate a second light from the first light the light emitting module is disposed under a display panel to provide the display panel with the second light, and the lower receiving container is configured to receive the light emitting module and the display panel6b
Abstract:
An organic light emitting display panel includes a display substrate, an insulation layer on the display substrate, the insulation layer having a first plane, a second plane, and a third plane that respectively correspond to a first sub-pixel area, a second sub-pixel area, and a third sub-pixel area, a first electrode, a second electrode, and a third electrode respectively on the first plane, the second plane, and the third plane, a pixel defining layer on the insulation layer, first, second, and third organic light emitting structures respectively on the first, second, and third electrodes, and a common electrode on the first, second, and third organic light emitting structures. At least one of the first, second, and third planes is inclined with respect to the display substrate.
Abstract:
A liquid crystal display panel includes unit pixels including a first unit pixel and a second unit pixel, each of the first unit pixel and the second unit pixel including a first white area and first to third color areas, gate lines which extend in a first direction, cross the unit pixels and include a first gate line and a second gate line, data lines which extend in a second direction, and pixel electrodes which are electrically connected to the data lines and include first to seventh pixel electrodes, where the first to third pixel electrodes overlap the first to third color areas of the first unit pixel, respectively, the fourth to sixth pixel electrodes overlap the first to third color areas of the second unit pixel, respectively, and the seventh pixel electrode overlaps the first white areas of the first and second unit pixels.
Abstract:
An organic light-emitting display apparatus includes a substrate, a first electrode disposed on the substrate, a pixel-defining layer which is disposed on the substrate and the first electrode and in which an opening which exposes a central part of the first electrode is defined, an interlayer which is disposed on the first electrode and comprises an organic light-emitting layer; and a second electrode disposed on the interlayer, where a sidewall of the opening comprises a bumpy structure in which a plurality of bumps is disposed.
Abstract:
A method of manufacturing a quantum dot optical component is provided. By the method, a plurality of quantum dot lines are formed on a first substrate, an encapsulation member that encapsulates the quantum dot lines is formed on the first substrate, a second substrate is laminated on the encapsulation member, and the first and second substrates are cut into a plurality of quantum dot optical components each including at least one of the quantum dot lines.
Abstract:
A backlight assembly having a light emitting module and a lower receiving container, the light emitting module including a first light source configured to generate a first light and a quantum dot rail configured to generate a second light from the first light the light emitting module is disposed under a display panel to provide the display panel with the second light, and the lower receiving container is configured to receive the light emitting module and the display panel.
Abstract:
A method of manufacturing a quantum dot optical component is provided. By the method, a plurality of quantum dot lines are formed on a first substrate, an encapsulation member that encapsulates the quantum dot lines is formed on the first substrate, a second substrate is laminated on the encapsulation member, and the first and second substrates are cut into a plurality of quantum dot optical components each including at least one of the quantum dot lines.