Abstract:
A thin film transistor array panel includes: a gate line and a data line on a substrate, insulatively crossing each other; a thin film transistor connected to the gate line and to the data line; a first color filter overlapping the thin film transistor; a second color filter overlapping the first color filter; a passivation layer covering the first color filter and the second color filter; a first pixel electrode on the passivation layer, the first pixel electrode overlapping the first color filter and the second color filter; and a second pixel electrode on the first pixel electrode, the second pixel electrode overlapping the first color filter and the second color filter and connected with a drain electrode of the thin film transistor.
Abstract:
A stretchable display device includes a stretchable substrate including a plurality of island areas that are separated from each other and a hinge area connecting the plurality of island areas, a plurality of display units respectively located in each of the plurality of island areas, a wiring part connecting the plurality of display units and located at the hinge area, and an insulating layer between the stretchable substrate and the plurality of display units. The insulating layer includes an opening overlapping the hinge area.
Abstract:
A present disclosure relates to a display device and a manufacturing method, and the display device according to an embodiment includes: a substrate; a transistor positioned on the substrate; a first pixel electrode connected to the transistor; a scattering layer positioned on the first pixel electrode; a second pixel electrode positioned on the scattering layer and covering a side surface of the first pixel electrode; an emission layer positioned on the second pixel electrode; and a common electrode positioned on the emission layer.
Abstract:
The present invention relates to a thin film transistor array panel and a manufacturing method thereof that prevent disconnection of wiring due to misalignment of a mask, and simplify a process and reduce cost by reducing the number of masks. The thin film transistor array panel according to the disclosure includes a source electrode enclosing an outer part of the first contact hole and formed on the second insulating layer; a drain electrode enclosing an outer part of the second contact hole and formed on the second insulating layer; a first connection electrode connecting the source region of the semiconductor layer and the source electrode through the first contact hole; and a second connection electrode connecting the drain region of the semiconductor layer and the drain electrode through the second contact hole.
Abstract:
A stretchable display device includes a stretchable substrate including a plurality of island areas that are separated from each other and a hinge area connecting the plurality of island areas, a plurality of display units respectively located in each of the plurality of island areas, a wiring part connecting the plurality of display units and located at the hinge area, and an insulating layer between the stretchable substrate and the plurality of display units. The insulating layer includes an opening overlapping the hinge area.
Abstract:
A light emitting diode display includes a first electrode, a second electrode overlapping the first electrode, a light emission layer between the first electrode and the second electrode, a pixel defining layer overlapping a part of the first electrode, the pixel defining layer and the light emission layer being spaced apart from each other in a top view, and an inorganic layer between the first electrode and the light emission layer, and an edge of the inorganic layer overlapping the light emission layer and the pixel defining layer.
Abstract:
A transistor array panel includes a transistor which includes a gate electrode, a semiconductor layer on the gate electrode, and a source electrode and a drain electrode on the semiconductor layer. The semiconductor layer includes a first portion overlapping the source electrode, a second portion overlapping the drain electrode, and a third portion between the first portion and the second portion. The first portion, the second portion, and the third portion have different minimum thicknesses.
Abstract:
A photoresist composition including a binder resin including a novolac resin represented by Chemical Formula 1, a diazide photosensitive initiator, and a solvent including a base solvent and an auxiliary solvent, wherein the base solvent includes propylene glycol monomethyl ether acetate, and the auxiliary solvent includes dimethyl-2-methylglutarate and ethyl beta-ethoxypropionate, wherein in Chemical Formula 1, R1 to R9 are each independently a hydrogen atom or an alkyl group, “a” is an integer number from 0 through 10, “b” is an integer number from 0 through 100, and “c” is an integer number from 1 through 10.
Abstract:
A display device includes, a substrate, a light emitting element layer on the substrate, including a plurality of light emitting elements emitting light, and a light control layer on the light emitting element layer, including a light-transmitting layer transmitting the light and a light-shielding layer for shielding the light, wherein the light-transmitting layer includes, a first light-transmitting layer, a second light-transmitting layer on the first light-transmitting layer, a third light-transmitting layer on the second light-transmitting layer, and a fourth light-transmitting layer on the third light-transmitting layer, wherein the light-shielding layer includes, a first portion between the second light-transmitting layers, a second portion on the first portion and between the fourth light-transmitting layers, a third portion on the second portion and between the fourth light-transmitting layers, and a fourth portion on the third portion, and wherein the second light-transmitting layer covers an upper surface and sides of the first light-transmitting layer.
Abstract:
A display device and a method of manufacturing a display device are provided. An embodiment of a display device includes a substrate; a first conductive layer disposed on the substrate; a first insulating layer disposed on the first conductive layer; a second conductive layer connected to the first conductive layer through a first contact hole in the first insulating layer; a second insulating layer filling an inside of the first contact hole; and a third insulating layer disposed on the second conductive layer and the second insulating layer. The first insulating layer includes a first region that overlaps the second conductive layer and a second region that does not overlap the second conductive layer, and a top surface of the first region of the first insulating layer is positioned higher than a top surface of the second region of the first insulating layer.