Abstract:
A method of manufacturing an organic light emitting display apparatus by utilizing a deposition apparatus for forming an organic layer on a substrate includes: fixing the substrate to a mask assembly for forming a common layer or a mask assembly for forming a pattern layer in a loading unit; when the one or more deposition assemblies are separated from the substrate, forming an intermediate layer by depositing a deposition material discharged from the one or more deposition assemblies in a deposition unit of the deposition apparatus onto the substrate while the substrate is moved relative to the one or more deposition assemblies by a first conveyer unit; and separating the substrate on which the deposition is finished from the mask assembly for forming the common layer or the mask assembly for forming the pattern layer in an unloading unit.
Abstract:
An organic light emitting display device is capable of securing sufficient compensation period such that a threshold voltage of a driving transistor may be compensated. A pixel includes: an organic light emitting diode; a second transistor for controlling an amount of current supplied from a first power source to the organic light emitting diode; a first capacitor having a first terminal coupled to a gate electrode of the second transistor; a first transistor coupled between a second terminal of the first capacitor and a data line, and being configured to turn on when a scan signal is supplied to a scan line; and a third transistor coupled between a gate electrode and a second electrode of the second transistor and having a turning-on period that is not overlapped with that of the first transistor. The third transistor is configured to turn on for a longer time than the first transistor.
Abstract:
An organic light emitting display device includes a substrate a plurality of pixels disposed along a first direction and a second direction, the first direction and the second direction being substantially parallel to a top surface of the substrate and substantially perpendicular to each other, first wirings which is disposed on the substrate, extends in the first direction, and includes a first low voltage power line, and second wirings which is disposed on the substrate, extends in the second direction, and includes a second low voltage power line electrically connected to the first low voltage power line.
Abstract:
Provided is an organic light emitting display including a pixel circuit unit prepared over a substrate and comprising a plurality of thin film transistors (TFTs), and an organic light emitting device or diode (OLED) electrically connected to the pixel circuit unit. The pixel circuit unit and the OLED are connected through a repair unit comprising a semiconductor material, in order to facilitate easy repair.
Abstract:
An organic light emitting diode display includes: a pixel region; and a peripheral region surrounding the pixel region, the peripheral region including: a gate common voltage line; an interlayer insulating film that covers the gate common voltage line and has a common voltage contact hole exposing part of the gate common voltage line; a data common voltage line that is formed on the interlayer insulating film and comes in contact with the gate common voltage line via the common voltage contact hole; barrier ribs that cover the data common voltage line and have common voltage openings exposing part of the data common voltage line; and a peripheral common electrode that is formed on the barrier ribs and comes in contact with the data common voltage line via the common voltage openings, wherein the barrier ribs are formed at positions corresponding to the boundaries with the common voltage contact hole.
Abstract:
A method of manufacturing an organic light emitting display apparatus by utilizing a deposition apparatus for forming an organic layer on a substrate includes: fixing the substrate to a mask assembly for forming a common layer or a mask assembly for forming a pattern layer in a loading unit; when the one or more deposition assemblies are separated from the substrate, forming an intermediate layer by depositing a deposition material discharged from the one or more deposition assemblies in a deposition unit of the deposition apparatus onto the substrate while the substrate is moved relative to the one or more deposition assemblies by a first conveyer unit; and separating the substrate on which the deposition is finished from the mask assembly for forming the common layer or the mask assembly for forming the pattern layer in an unloading unit.
Abstract:
An organic light emitting display that can stably extract information from pixels. A driving method of the organic light emitting display includes: generating first digital values by sensing deterioration information of organic light emitting diodes respectively included in a plurality of pixels coupled to a data line during two or more continuous frame periods; storing the first digital values in a memory; generating second digital values by sensing threshold voltage and mobility information of driving transistors respectively included in the pixels during two or more continuous frame periods; storing the second digital values in the memory; converting input data into calibration data according to the information stored in the memory to display an image having a uniform brightness, irrespective of the deterioration information of the organic light emitting diodes and the threshold voltage and mobility information of the driving transistors; and supplying a data signal in accordance with the calibration data to the data line.
Abstract:
An organic light emitting display device is capable of securing sufficient compensation period such that a threshold voltage of a driving transistor may be compensated. A pixel includes: an organic light emitting diode; a second transistor for controlling an amount of current supplied from a first power source to the organic light emitting diode; a first capacitor having a first terminal coupled to a gate electrode of the second transistor; a first transistor coupled between a second terminal of the first capacitor and a data line, and being configured to turn on when a scan signal is supplied to a scan line; and a third transistor coupled between a gate electrode and a second electrode of the second transistor and having a turning-on period that is not overlapped with that of the first transistor. The third transistor is configured to turn on for a longer time than the first transistor.
Abstract:
A thin film transistor includes a substrate, a gate electrode on the substrate, an active layer spaced from the gate electrode, a source electrode and a drain electrode spaced from the gate electrode and coupled to the active layer, a gate wiring at a same layer as the gate electrode and coupled to the gate electrode, and first conductive members electrically coupled to, and overlapping, the gate wiring.
Abstract:
An organic light emitting diode display including a substrate, a scan line transferring a scan signal, a compensation control line transferring a compensation control signal, an operation control line applying an operation control signal, a data line and a driving voltage line transferring a data signal and a driving voltage, respectively, a switching thin film transistor (TFT) connected to the scan line and the data line, a compensation TFT and an initialization TFT connected to the compensation control line, an operation control TFT connected to the operation control line and the switching TFT, a driving TFT connected to the driving voltage line, an organic light emitting diode connected to a drain electrode of the driving TFT, and a hold capacitor connected between a source electrode of the operation control TFT and a gate electrode of the initialization TFT.