Abstract:
A display device includes a signal controller and a data driver. The signal controller processes an input image signal to generate an output image signal. The signal controller processes the input image signal using a correction unit. The correction unit corrects the input image signal to a first gray scale value greater than 0 gray scale value when the gray scale value of the input image signal is 0. The output image signal is based on the corrected input image signal. The data driver converts the output image signal into a data voltage to be applied to a display panel.
Abstract:
A display device includes: a gray converter which adds compensation grays to input grays to provide output grays; a data driver which provides data voltages corresponding to the output grays; and a display panel which includes pixels which receives the data voltages, where the gray converter includes: a voltage domain converter which converts the input grays into conversion grays; and a compensation gray calculator which calculates the compensation grays based on the conversion grays.
Abstract:
A display device includes a display unit including a plurality of pixels, a plurality of gate lines and a plurality of data lines which are connected to the plurality of pixels, a data driver applying data voltages to the plurality of data lines, and a gate driver delaying and outputting first gate signals applied to gate lines among the plurality of gate lines in a first sub-frame included in one frame and advancing and outputting second gate signals which are applied to remaining gate lines among the plurality of gate lines in a second sub-frame.
Abstract:
A display apparatus includes a display panel, a driving controller and a data driver. The driving controller processes input image data according to a variable input frequency and generates a data signal having a varied frame length. The data driver converts the data signal into a data voltage and outputs the data voltage to the display panel. The driving controller determines a variable frequency mode and generates an asymmetric data signal including a positive data signal and a negative data signal which are asymmetric with respect to a common voltage for a same grayscale value in the variable frequency mode.
Abstract:
A display device includes a display panel including unit areas. Each of the unit areas includes pixels arranged in a matrix formation; and data lines (DLs) connected to the pixels. The display device is configured to: apply data voltages of a same polarity to first DLs positioned between adjacent pixel columns; and apply DVs of different polarities to second DLs positioned at respective sides of each pixel column. Each of the pixels is connected to one of the second DLs. A connection direction between the pixels and the DLs in each of a plurality of pixel rows is changed in a determined pixel column interval. Connection directions between the pixels and the DLs are opposite each other in odd-numbered pixel rows adjacent in a column direction. Connection directions between the pixels and the DLs are opposite each other in even-numbered pixel rows adjacent in the column direction.
Abstract:
A method of driving a liquid crystal display panel including a liquid crystal cell connected to a data line and a gate line includes: outputting a data signal to the data line; outputting a plurality of gate clock signals; and outputting a gate signal to the gate line based on the gate clock signals. Here, an interval between rising edges of the gate signals adjacent to each other is increased as a distance between the liquid crystal cell receiving the gate signal and a data driving part outputting the data signal increases.