Abstract:
A printing abnormality detection system includes a printer that prints an image on a printing medium based on image data, a reader that reads the image printed on the printing medium, a processing unit that detects an abnormal printed portion based on read image data from the reader, a storage unit that stores information of a display necessity determination criterion, and a display unit. The processing unit determines, based on the image data, the read image data, and the display necessity determination criterion, whether the abnormal printed portion is to be displayed on the display unit. When the processing unit determines that the abnormal printed portion is to be displayed, the processing unit executes a process of displaying, on the display unit, abnormal printed portion information including an image of the abnormal printed portion.
Abstract:
Provided is technology enabling detecting cockling in a print medium without printing a cockling detection pattern on the print medium. An image processing device has: a light source configured to illuminate a print medium; a sensor configured to scan the print medium; and a controller configured to control the light source and sensor. The controller determines if there is cockling in an evaluation area of the print medium based on change in the detection values of the sensor in the evaluation area.
Abstract:
Provided is a printer having: a carriage configured to carry and move a printhead; a camera attached to the carriage and configured to photograph an image printed by the printhead; an adjustment mechanism configured to adjust an installation position of the camera; and a processor configured to control to move the carriage to a position of a predetermined specific mark, photograph the specific mark by the camera, and based on a photographed image of the specific mark, adjust an installation position of the camera by the adjustment mechanism.
Abstract:
A method for determining a working gap includes a first recording step for ejecting ink from a recording head onto a first recording medium to record a test pattern, a first imaging step for capturing the test pattern recorded on the first recording medium in each of a state where a distance between the recording head and the first recording medium is a first distance, and a state where a distance between the recording head and the first recording medium is a second distance, a function calculating step, a second recording step for recording the test pattern on a second recording medium, a second imaging step for capturing the test pattern recorded on the second recording medium, and a working gap determining step for determining, based on the number of pixels of the captured test pattern and a function, a distance between the recording head and the second recording medium.
Abstract:
There is provided a printing apparatus including: an ink jet head that prints on a print medium; a camera that captures an image on the print medium; a carriage that mounts the ink jet head and the camera; and a processor that generates image data based on a captured image obtained by capturing a chart by the camera, the chart being printed on the print medium by the ink jet head, in which the processor generates at least one of image data representing an image of an image range smaller than a capturing range of the camera and image data representing an image of a resolution lower than a resolution of the captured image, for an adjustment item.
Abstract:
A measuring apparatus includes a carriage on which an imaging control section that controls imaging of an object is mounted, a movement control section that moves the carriage relative to the object, an image processing section that acquires image information, a first signal line that connects the imaging control section and the movement control section to each other, and a second signal line that connects the imaging control section and the image processing section to each other. A control signal is transmitted over the first signal line, and a data signal is transmitted over the second signal line.
Abstract:
An optical module includes a wavelength variable interference filter that selects light of a predetermined wavelength from incident light, and can change the wavelength of emitted light; a global shutter imaging element that accumulates electric charges while being exposed to the emitted light, and outputs a detection signal in response to the accumulated electric charges; an imaging element controller for setting a photodetection period during which the electric charges are accumulated in the imaging element, and a standby period during which the electric charges accumulated in the imaging elements are reset; and a spectroscopic controller for controlling the wavelength change driving of the emitted light. The imaging element controller sets the duration of the standby period to a minimum drive time for changing the wavelength or greater. The spectroscopic controller starts the wavelength change driving at the start of the standby period.
Abstract:
A printer includes: a memory configured to store a machine-learned model obtained by machine learning using teaching data associating at least one of reflectance of a print medium, transmittance of the print medium, and image data obtained by capturing an image of a surface of the print medium with a type of the print medium; and a print controller configured to determine a type of a print medium using at least one of reflectance of the print medium, transmittance of the print medium, and image data obtained by capturing an image of a surface of the print medium and the machine-learned model.
Abstract:
An image quality inspection camera system includes: N (integer of N≥2) light sources that emit light on a medium; a camera for photographing the medium; and a control section, in which the control section executes setting processing when an i-th light source (integer of i=1 to N) is lit with a reference driving signal, for setting an image quality inspection time driving signal of the i-th light source, and the setting processing includes calculating an i-th representative luminance value by performing a predetermined representative luminance value calculation processing based on a luminance value of each pixel photographed by the camera when the i-th light source is lit with the reference driving signal, and determining the image quality inspection time driving signal of the i-th light source by adjusting the reference driving signal such that the i-th representative luminance value satisfies a predetermined target luminance value condition.
Abstract:
A measuring device includes an optical device which includes a window on which light is incident, a shutter which includes a white reference surface on an optical device side and is configured to block the window, a first moving mechanism which moves the optical device in a direction, and a second moving mechanism which relatively moves the window and the shutter between a first position at which the window is blocked by the white reference surface and a second position at which light is incident on the window.