Abstract:
A printer including a motor for transporting an object to be transported, the printer includes: a memory storing a machine-learned model configured to output a control parameter of the motor that brings a transport position of the object to be transported close to a reference based on one or more state variables including at least one of a speed of the object to be transported, an acceleration of the object to be transported, a movement amount of the object to be transported, a start position of movement of the object to be transported, an ambient environment of the printer, a value of a current flowing through the motor, a type of a print medium onto which printing is to be performed by the printer, and an accumulated movement amount of the object to be transported; and a controller configured to control the motor to perform printing by using the control parameter obtained based on the machine-learned model.
Abstract:
A spectroscopic measurement device includes a variable wavelength interference filter capable of selectively emitting light with a predetermined wavelength out of incident light, and changing the wavelength of the light to be emitted, a light receiving element adapted to output a detection signal corresponding to a light exposure in response to an exposure to the light emitted from the variable wavelength interference filter, a detection signal acquisition section adapted to obtain a plurality of detection signals different in the light exposure from each other with respect to each of the wavelengths, and a selection section adapted to select the detection signal having a highest signal level out of signal levels of the detection signals obtained, which are lower than a maximum signal level corresponding to a saturated light exposure of the light receiving element.
Abstract:
A printing abnormality detection system includes a printer that prints an image on a printing medium based on image data, a reader that reads the image printed on the printing medium, a processing unit that detects an abnormal printed portion based on read image data from the reader, a storage unit that stores information of a display necessity determination criterion, and a display unit. The processing unit determines, based on the image data, the read image data, and the display necessity determination criterion, whether the abnormal printed portion is to be displayed on the display unit. When the processing unit determines that the abnormal printed portion is to be displayed, the processing unit executes a process of displaying, on the display unit, abnormal printed portion information including an image of the abnormal printed portion.
Abstract:
An image quality inspection camera system includes: N (integer of N≥2) light sources that emit light on a medium; a camera for photographing the medium; and a control section, in which the control section executes setting processing when an i-th light source (integer of i=1 to N) is lit with a reference driving signal, for setting an image quality inspection time driving signal of the i-th light source, and the setting processing includes calculating an i-th representative luminance value by performing a predetermined representative luminance value calculation processing based on a luminance value of each pixel photographed by the camera when the i-th light source is lit with the reference driving signal, and determining the image quality inspection time driving signal of the i-th light source by adjusting the reference driving signal such that the i-th representative luminance value satisfies a predetermined target luminance value condition.
Abstract:
A printer includes: a carriage which moves with a print head mounted thereon, the print head being configured to eject ink; a camera attached to the carriage and configured to capture an image printed on a print medium by the print head; a movement mechanism configured to move the carriage along a main scan direction; a transportation mechanism configured to transport the print medium along a sub-scan direction; a processor configured to control printing of the image onto the print medium; and a storage configured to store a correction value of a movement amount of the movement mechanism as a first correction value for a location adjustment of a capture area of the camera and store a correction value of a transportation amount of the transportation mechanism as a second correction value for the location adjustment of the capture area.
Abstract:
A printing apparatus includes a spectrometer that emits light to detect reflected light and outputs a signal corresponding to an intensity of the light, a white board that reflects the light, a carriage that holds the spectrometer, and a second adjustment mechanism that adjusts a posture of the spectrometer with respect to the carriage.
Abstract:
A printer including: a first printhead and a second printhead configured to eject ink to a print medium; a conveyance mechanism configured to convey the print medium; a camera configured to photograph the print medium; a carriage configured to carry and move the first printhead, the second printhead, and the camera; and a processor configured to print a third mark by the first printhead, photograph the third mark by the camera, adjust driving the conveyance mechanism and the carriage based on a result of the photograph, print a first mark and a second mark by the first printhead and the second printhead respectively, photograph the first mark and the second mark by the camera, and based on the result of the photograph, adjust the ink ejection timing of the second printhead.
Abstract:
A colorimetry method includes: acquiring spectroscopic measurement results for a colorimetry range in an image; and acquiring colorimetry results for a first color based on the spectroscopic measurement results for the first color from a plurality of colors in a case where the plurality of colors is included in the colorimetry range.
Abstract:
An optical module includes a variable wavelength interference filter that has a pair of reflection films facing one another, and that emits light with a wavelength according to the gap dimensions of the pair of reflection films; an incident side optical system as a negative power lens group that guides an incident luminous flux to the variable wavelength interference filter; and a light guiding optical system as a positive power lens group on which a luminous flux passing through the variable wavelength interference filter is incident, in which the incident side optical system guides the incident luminous flux to the variable wavelength interference filter as a luminous flux in which the principal ray is parallel with respect to the optical axis (central optical axis) orthogonal to the pair of reflection films and that is scattered with respect to the principal ray, and the light guiding optical system makes the luminous flux scattered with respect to the principal ray a parallel luminous flux.
Abstract:
A spectrometry device includes a wavelength variable interference filter; a filter driving unit which sets a wavelength of light which is output from the wavelength variable interference filter, and outputs at least red light and green light among three color light beams of predetermined red light in a red color wavelength range, predetermined green light in a green light wavelength range, and predetermined blue light in a blue light wavelength range in a predetermined order; an imaging element which receives at least red light and green light which are output from the wavelength variable interference filter, and obtains at least a red image and a green image among three color images; and an image generation unit which generates a composite image using the latest color images including at least the obtained red image and green image.