Abstract:
A power supply device includes a plurality of power sources each including an antenna and an AC/DC conversion unit that converts an AC signal received by the antenna to a DC signal, a plurality of consolidating units each including a first consolidating circuit that selectively consolidates a plurality of DC signals supplied by the plurality of power sources, and a power supply unit that includes a second consolidating circuit that selectively consolidates DC signals output from the plurality of consolidating units, and a first voltage conversion circuit that converts a DC signal resulting from consolidation in the second consolidating circuit, to a predetermined voltage.
Abstract:
A power supply circuit according to an embodiment of the invention includes: voltage sources; voltage control circuits that boost an input voltage; and a voltage source connection switch that connects at least one of the voltage sources to one of the voltage control circuits. For example, the voltage source connection switch connects, to the voltage control circuit, a voltage source having a voltage lower than a predetermined reference voltage among the voltage sources, and connects, to the voltage control circuit, a voltage source having a voltage equal to or higher than the determined reference voltage among the voltage sources.
Abstract:
The invention aims at providing a semiconductor device, a semiconductor system including same, and a semiconductor device control method enabling it to correctly judge that a module has been coupled to and decoupled from a communication bus. According to one embodiment, a host controller includes a variable resistance element and a control circuit that varies the resistance value of the variable resistance element so that the potential of a potential detecting line which is determined by the variable resistance element and a resistance element provided in each of modules will fall within a predefined range. It is thus possible to keep that potential varying to a certain extent or more due to coupling and decoupling of a module to/from the communication bus. It is therefore possible to correctly judge that a module has been coupled/decoupled to/from the communication bus.
Abstract:
According to an embodiment of the present invention, a semiconductor device includes a charge pump circuit having a plurality of booster units which are connected in series between an input terminal and an output terminal, each of the plurality of booster units includes: a main transistor that is diode-connected so as to cause a forward current to flow in a direction from an internal input terminal toward an internal output terminal; a sub-transistor that is connected between a first terminal of the main transistor and a back-gate terminal of the main transistor and has a control terminal connected to a second terminal of the main transistor; a resistor that connects the second terminal of the main transistor and the back-gate terminal of the main transistor; and a capacitor that is connected between the internal output terminal and a clock wire.
Abstract:
A power supply device according to an embodiment comprises a plurality of power sources 10 each including an antenna and an AC/DC conversion unit, a plurality of consolidating units 13—1 to 13—i, and a power supply unit 15. The consolidating units 13—1 to 13—i respectively include consolidating circuits 14—1 to 14—i that selectively consolidate a plurality of DC signals 21—1 to 21—n supplied by the plurality of power sources 10. The power supply unit 15 includes a consolidating circuit 16 that selectively consolidates the DC signals 21—1 to 21—i output from the plurality of consolidating units 13—1 to 13—i, and a voltage conversion circuit 17 that converts a DC signal 23 resulting from consolidation in the consolidating circuit 16, to a predetermined voltage.
Abstract:
To provide a correction method of resolver correction device and resolver correction device that can reduce rotation angle (the rotation speed) detection error caused by resolver. An excitation signal supply circuit supplies an excitation signal of an excitation frequency to the resolver during a normal operation, for supplying the excitation signals of a plurality of frequencies including the excitation frequency to the first phase shifter or the second phase shifter during a calibration operation. A shift amount searching circuit searches the first shift amount setting value for each frequency of the excitation signal such that the first shift amount becomes 45 degrees, and the second shift amount setting value for each frequency of the excitation signal such that the second shift amount becomes 135 degrees, while referring to the detection result of the phase difference detection circuit during the calibration operation, and stores in the correction table.
Abstract:
According to an embodiment, a module M1 includes an internal circuit 14, and a standard information transmitting unit 15 that transmits a result of a comparison between a voltage supplied from an externally-disposed control device 1 and a threshold voltage specified based on a communication standard of the internal circuit 14 to the control device 1 as information on the communication standard of the internal circuit 14. As a result, the module M1 can communicate with the control device 1 according to a correct communication standard.
Abstract:
According to one embodiment, a semiconductor device includes: a first switch SWx which switches whether or not to supply a first power supply voltage Vx generated by accumulating a charge outputted from a power source 10, as a second power supply voltage VDD to a first circuit 13, and a second switch SW1 which switches whether or not to connect to the first circuit 13 a smoothing capacitor C1 which suppresses a fluctuation of the second power supply voltage VDD, and the first switch SWx is switched to an on state in response to that the first power supply voltage Vx has reached a sufficient voltage, and then the second switch SW1 is switched to the on state in response to that the second power supply voltage VDD has reached a sufficient voltage.
Abstract:
A power supply circuit according to an embodiment has a plurality of voltage sources, a switch circuit that switches between a state in which the plurality of voltage sources are connected in series and a state in which the plurality of voltage sources are connected in parallel, and a voltage control circuit that boosts an input voltage. The switch circuit connects the plurality of voltage sources in series, supplies an output of the plurality of serially connected voltage sources to an output node of the voltage control circuit, thereafter connects the plurality of voltage sources in parallel, and supplies outputs of the plurality of parallel-connected voltage sources to the voltage control circuit. The voltage control circuit boosts voltages of the plurality of parallel-connected voltage sources.
Abstract:
A synthesis circuit synthesizes detection signals from a plurality of detection coils to generate a synthesized detection signal indicating a sine component of a rotation angle of a rotor. In this regard, the detection coils which are synthesis targets when the synthesis circuit generates the synthesized detection signal include a detection coil of a salient pole installed at a first electrical angle based on a first pole of the rotor and detection coils of salient poles installed at a second electrical angle different from the first electrical angle based on the first pole, and do not include detection coils installed at the first electrical angle based on a second pole.