Abstract:
Systems, methods, apparatuses, and media are provided for selective application of flow control in a user equipment supporting a plurality of radio access technologies. A determination may be made as to whether a flow control condition is met. A subset of a the plurality of radio access technologies may be selected in response to determining that the flow control condition is met. Flow control may be applied to the radio access technologies of the selected subset.
Abstract:
Various embodiments implemented on a mobile communication device leverage the availability of multiple RATs to receive service from a combination of RATs that avoids the potential for inter-RAT coexistence interference. A mobile communication device processor may determine whether there is a likelihood of inter-RAT coexistence interference between a first RAT and a second RAT. In response to determining that there is a likelihood of interference occurring between the first RAT and the second RAT, the device processor may attempt to receive service with the first RAT and a third RAT that will not interfere with the first RAT. The device processor may monitor conditions to recognize when the likelihood of interference no longer exists between the first RAT and the second RAT, and reestablish service with the second RAT when that happens. Thus, the device processor may ensure that service is only acquired with non-interfering RATs.
Abstract:
Various embodiments implemented on a mobile communication device leverage the availability of multiple RATs to receive service from a combination of RATs that avoids the potential for inter-RAT coexistence interference. A mobile communication device processor may determine whether there is a likelihood of inter-RAT coexistence interference between a first RAT and a second RAT. In response to determining that there is a likelihood of interference occurring between the first RAT and the second RAT, the device processor may attempt to receive service with the first RAT and a third RAT that will not interfere with the first RAT. The device processor may monitor conditions to recognize when the likelihood of interference no longer exists between the first RAT and the second RAT, and reestablish service with the second RAT when that happens. Thus, the device processor may ensure that service is only acquired with non-interfering RATs.
Abstract:
The various embodiments include methods and apparatuses for avoiding interference scenarios during concurrent communication of dual-technology wireless communication devices. Interference scenarios may be avoided by predicatively determining the potential for interference between the channels of multiple communications on the dual-technology wireless communication devices. For a pending communication, a predicative calculation may be made to determine whether the channel of the pending communication and the channel of an active communication may interfere with each other. If so, the communication with a lower priority may switch to the highest powered channel that does not interfere with the higher priority communication. Once the interference condition expires, and the lower priority communication persists, its channel may switch to a higher power channel that will not cause interference with any active or pending communications. Switching the channel for a communication may be prompted by electromagnetic interference from components of the dual-technology wireless communication devices.
Abstract:
The various embodiments include methods and apparatuses for avoiding interference scenarios during concurrent communication of dual-technology wireless communication devices. Interference scenarios may be avoided by predicatively determining the potential for interference between the channels of multiple communications on the dual-technology wireless communication devices. For a pending communication, a predicative calculation may be made to determine whether the channel of the pending communication and the channel of an active communication may interfere with each other. If so, the communication with a lower priority may switch to the highest powered channel that does not interfere with the higher priority communication. Once the interference condition expires, and the lower priority communication persists, its channel may switch to a higher power channel that will not cause interference with any active or pending communications. Switching the channel for a communication may be prompted by electromagnetic interference from components of the dual-technology wireless communication devices.