Abstract:
Methods, systems, and devices are described for using low energy (LE) signaling to indicate to a wireless station (STA), prior to transmission of a beacon, whether the beacon will further indicate that an access point (AP) has data to transmit to the STA. In one aspect, a method may include receiving, using a first radio of a wireless STA using a LE communication protocol, a first signal comprising an indication of a traffic indication map (TIM) of a wireless local area network (WLAN) beacon, and selectively powering up a second radio of the wireless STA to receive the WLAN beacon in response to the indication. In one aspect, the wireless STA may power up the first radio at a predetermined interval prior to a target beacon transmission time (TBTT) of the WLAN beacon.
Abstract:
This disclosure provides methods, components, devices and systems for Neighbor Aware Networking (NAN) communications between two devices concurrently over multiple NAN Data Links (NDLs). A multi-NDL connection is formed between two NAN devices where both devices support multi-link operation (MLO) for NAN communications. A first NAN device and a second NAN device each advertises its respective capability to support MLO for NAN communications to the other device by transmitting to the other device a NAN frame that includes an MLO information element. A multi-NDL connection is formed between the first NAN device and the second NAN device in accordance with the information in the multi-link information elements. Each NDL of the multi-NDL connection is associated with a set of frequency channels that do not overlap the set of frequency channels associated with another NDL. Concurrent NAN communication can occur over the multiple NDLs.
Abstract:
Methods, systems, and devices for extremely high throughput (EHT) and high frequency bandwidth (BW) support indication are described. A first wireless device may establish a wireless communication link with a second wireless device, receive, from the second wireless device, a first message, and transmit a second message to the second wireless device. The first message may indicate that the second wireless device is capable of communicating using a first physical layer (PHY) mode having a first latency below a first threshold and a first BW associated with a throughput having a second latency below a second threshold. The second message may similarly indicate whether the first wireless device is capable of communicating using the first PHY mode and the first BW. The first wireless device may select a second PHY mode and a second BW for communicating data with the second wireless device based on receiving the first message.
Abstract:
Systems and methods are disclosed for coordinating operation of WLAN and Bluetooth systems to manage an AMP connection based on an operational status of the WLAN transceiver.
Abstract:
This disclosure provides systems, devices, apparatus and methods, including computer programs encoded on storage media, for receiving scanning information from a second wireless communication device over a wireless link associated with a first wireless communications protocol, the scanning information identifying one or more wireless frequency channels associated with a second wireless communications protocol; selecting a subset of wireless channels associated with the second wireless communications protocol based on the scanning information; and scanning one or more wireless frequency channels of only the selected subset of wireless frequency channels. This disclosure also provides systems, devices, apparatus and methods, including computer programs encoded on storage media, for scanning a plurality of wireless frequency channels in one or more frequency bands associated with one or more first wireless communications protocols; identifying a subset of the plurality of scanned wireless frequency channels on which one or more access points are operating; and transmitting scanning information including the identified subset of wireless frequency channels to a second wireless communication device over a wireless link associated with a second wireless communications protocol.
Abstract:
Methods, systems, and devices are described for peer-to-peer (P2P) group owner (GO) multi-channel concurrent (MCC) operation and an associated absence period indication for legacy client devices. In some aspects, an absence period during which a peer-to-peer (P2P) group owner (GO) is unavailable to receive transmissions from client devices wirelessly coupled with the P2P GO may be identified. A notice of absence (NoA) may be transmitted by the P2P GO, the P2P NoA indicating the absence period if the client devices wirelessly coupled with the P2P GO include a P2P client device that supports a P2P protocol. A legacy wireless beacon may be transmitted by the P2P GO, the legacy wireless beacon comprising an information element (IE) indicating the absence period if the client devices wirelessly coupled with the P2P GO include a legacy client device that does not support the P2P protocol.
Abstract:
A method and apparatus are disclosed for reducing power consumption of wireless devices operating in a wireless network. In one embodiment, a first wireless device may establish a BLUETOOTH low energy (BLE) connection and a Wi-Fi connection with a second wireless device. The first wireless device may detect Wi-Fi activity and may operate in a low-power mode when no Wi-Fi activity is detected. The first wireless device may receive a synchronized BLE message and may enter a normal operating mode and leave the low-power mode based, at least in part, on the synchronized BLE message. In another embodiment, the first wireless device may operate a scheduler to schedule communications between the second wireless device and a third wireless device. The first wireless device may suspend operation of the scheduler based, at least in part, on a received synchronized BLE message from the second wireless device.
Abstract:
Methods, systems, and devices for wireless communication are described. A first wireless device may establish a communication session with a second wireless device using a neighbor awareness networking (NAN) radio access technology (RAT). The first wireless device may transmit a first indication that the first wireless device is capable of using a secured ranging protocol. The first wireless device may receive a second indication that the second wireless device is also capable of using the secured ranging protocol. The first wireless device may determine one or more setup parameters to use for a ranging procedure between the first wireless device and the second wireless device based on the first indication and the second indication. Accordingly, the first wireless device may obtain a measurement report after using the secured ranging protocol to perform the ranging procedure in accordance with the one or more setup parameters.
Abstract:
Methods, systems, and devices are described for peer-to-peer (P2P) group owner (GO) multi-channel concurrent (MCC) operation and an associated absence period indication for legacy client devices. In some aspects, an absence period during which a peer-to-peer (P2P) group owner (GO) is unavailable to receive transmissions from client devices wirelessly coupled with the P2P GO may be identified. A notice of absence (NoA) may be transmitted by the P2P GO, the P2P NoA indicating the absence period if the client devices wirelessly coupled with the P2P GO include a P2P client device that supports a P2P protocol. A legacy wireless beacon may be transmitted by the P2P GO, the legacy wireless beacon comprising an information element (IE) indicating the absence period if the client devices wirelessly coupled with the P2P GO include a legacy client device that does not support the P2P protocol.
Abstract:
This disclosure describes systems and methods for implementing power save modes of operation while maintaining a WLAN communications link. The techniques of the invention involve coordinating power save mode periods between the participating devices by through the use of a Peer Power Save Information Element (PPS IE) included in the beacon frame transmitted by one of the devices. The PPS IE may include an Enabled/disabled bit, a PPS Count value and a PPS Duration. The PPS Count may be decremented from an initial value after each beacon transmission until the count reaches zero, at which point the device may be configured to enter power save mode for the period indicated by the PPS Duration. During power save mode, the device may track the duration and awaken after the corresponding period of time to begin transmitting and receiving beacons again.