Abstract:
Methods and apparatuses are described in which dynamic voltage and frequency scaling may be used to save power when processing packets in a wireless communications device. In some cases, inframe detection may allow the device to determine whether to transition from a first (e.g., lower) voltage level to a second (e.g., higher) voltage level to process one or more packets of a received frame. For some packet types the first voltage level may be maintained. In other cases, the device may determine a bandwidth to use from among multiple bandwidths supported by the device. The bandwidth may be determined based on channel conditions. A voltage level may be identified that corresponds to the determined bandwidth and a processing voltage may be scaled to the identified voltage level. The device may be configured to operate in wireless local area network (WLAN) and/or in a cellular network (e.g., LTE).
Abstract:
Methods, systems, and devices are described for establishing a virtual communication link including at least a first and second physical link between two devices. A single virtual packet queue of a device may receive one or more data packets to be transmitted via the virtual communication link. The single virtual packet queue may attach a virtual sequence number to each of the one or more data packets and send the one or more data packets to one or more of the first or the second physical link according to the assigned virtual sequence numbers. The one or more packets may then be communicated via the first and/or second physical links according to link specific sequence numbers, such as medium access control (MAC) sequence numbers, assigned to the one or more data packets by the first and/or second physical links.
Abstract:
Methods and apparatuses are described for wireless communications coexistence. In one aspect, a first device may detect an interference produced by a second device co-located with the first device. The first device may communicate with an access point (AP) using a free or open band and the second device may communicate with a cellular network (e.g., LTE network). In response to the detected interference, a message may be transmitted to the AP from the first device with information for the AP to determine whether to switch to a different channel in the open band to communicate with the first device. The AP may receive such a message from each terminal in at least a subset of associated terminals. The AP may determine, from the messages received, to switch to the different channel in the open band and may transmit a message to the associated terminals indicating the switch.
Abstract:
Methods, systems, and devices are described for power conservation in a wireless communications system through efficient transmissions and acknowledgements of information between an AP and a station. The time between a determination by a station to enter a power saving mode and entering network sleep mode by the station may be reduced through a transmission, by an AP, of an MPDU to the station successive to an SIFS after transmission of an acknowledgement to the station of a PS-Poll frame from the station. The time to enter a power saving mode by a station may also be reduced through transmission of A-MPDUs in which a last MPDU of the A-MPDU has an indicator bit cleared to indicate no additional data is to be transmitted. An AP may prevent a retransmission of an MPDU to the station in the absence of an acknowledgement from the station, to further enhance efficiency.
Abstract:
Methods, systems, and devices are described for power conservation in a wireless communications system through efficient transmissions and acknowledgements of information between an AP and a station. The time between a determination by a station to enter a power saving mode and entering network sleep mode by the station may be reduced through a transmission, by an AP, of an MPDU to the station successive to an SIFS after transmission of an acknowledgement to the station of a PS-Poll frame from the station. The time to enter a power saving mode by a station may also be reduced through transmission of A-MPDUs in which a last MPDU of the A-MPDU has an indicator bit cleared to indicate no additional data is to be transmitted. An AP may prevent a retransmission of an MPDU to the station in the absence of an acknowledgement from the station, to further enhance efficiency.
Abstract:
A method and apparatus are disclosed for increasing the speed with which a number of stations associated with an IBSS network may be synchronized and/or for reducing the number of beacon frame collisions in the IBSS network. For at least some embodiments, the synchronization speed may be increased by allowing STAs having faster clock speeds to broadcast beacon frames more frequently than STAs having slower clock speeds.
Abstract:
Methods and apparatuses are described in which dynamic voltage and frequency scaling may be used to save power when processing packets in a wireless communications device. In some cases, inframe detection may allow the device to determine whether to transition from a first (e.g., lower) voltage level to a second (e.g., higher) voltage level to process one or more packets of a received frame. For some packet types the first voltage level may be maintained. In other cases, the device may determine a bandwidth to use from among multiple bandwidths supported by the device. The bandwidth may be determined based on channel conditions. A voltage level may be identified that corresponds to the determined bandwidth and a processing voltage may be scaled to the identified voltage level. The device may be configured to operate in wireless local area network (WLAN) and/or in a cellular network (e.g., LTE).
Abstract:
Methods, systems, and devices are described for adapting blind reception duration for range and congestion. A wireless station may measure channel conditions (e.g., range to an access point (AP) and channel congestion), and adjust one or more sleep timers based on the conditions. The sleep timers may each be associated with a window for reception of an expected transmission. If the transmission is not received in the window, the station may enter a sleep state to conserve power. In one example, a beacon miss timer is adjusted, and the expected wireless transmission is a delivery traffic indication message (DTIM). In another example, a content after beacon (CAB) timer is adjusted and the expected wireless transmission is the CAB. In some cases, the station may measure a delay for a number of beacons and determine the adjustment based on the delays.
Abstract:
Methods and apparatuses are described for wireless communications coexistence. In one aspect, a first device may detect an interference produced by a second device co-located with the first device. The first device may communicate with an access point (AP) using a free or open band and the second device may communicate with a cellular network (e.g., LTE network). In response to the detected interference, a message may be transmitted to the AP from the first device with information for the AP to determine whether to switch to a different channel in the open band to communicate with the first device. The AP may receive such a message from each terminal in at least a subset of associated terminals. The AP may determine, from the messages received, to switch to the different channel in the open band and may transmit a message to the associated terminals indicating the switch.
Abstract:
Methods, systems, and devices are described for establishing a virtual communication link including at least a first and second physical link between two devices. A single virtual packet queue of a device may receive one or more data packets to be transmitted via the virtual communication link. The single virtual packet queue may attach a virtual sequence number to each of the one or more data packets and send the one or more data packets to one or more of the first or the second physical link according to the assigned virtual sequence numbers. The one or more packets may then be communicated via the first and/or second physical links according to link specific sequence numbers, such as medium access control (MAC) sequence numbers, assigned to the one or more data packets by the first and/or second physical links.