Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) may receive data from both a source base station and a target base station during handover. For example, the UE may refrain from resetting or reestablishing media access control (MAC) and packet data convergence protocol (PDCP) layer configurations until after a successful access procedure is performed with the target base station. In some cases, a single radio link control (RLC)/PDCP stack may be used during handover procedures. A source base station may, for example, forward data to a target base station after receiving a handover execution message. A UE may identify and resolve any duplicate data sent by both base stations during the transition. Additional signaling may be used (e.g., during the radio resource control (RRC) configuration) to indicate that a UE supports dual link handover.
Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) may receive data from both a source base station and a target base station during handover. For example, the UE may refrain from resetting or reestablishing media access control (MAC) and packet data convergence protocol (PDCP) layer configurations until after a successful access procedure is performed with the target base station. In some cases, a single radio link control (RLC)/PDCP stack may be used during handover procedures. A source base station may, for example, forward data to a target base station after receiving a handover execution message. A UE may identify and resolve any duplicate data sent by both base stations during the transition. Additional signaling may be used (e.g., during the radio resource control (RRC) configuration) to indicate that a UE supports dual link handover.
Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) may receive data from both a source base station and a target base station during handover. For example, the UE may refrain from resetting or reestablishing media access control (MAC) and packet data convergence protocol (PDCP) layer configurations until after a successful access procedure is performed with the target base station. In some cases, a single radio link control (RLC)/PDCP stack may be used during handover procedures. A source base station may, for example, forward data to a target base station after receiving a handover execution message. A UE may identify and resolve any duplicate data sent by both base stations during the transition. Additional signaling may be used (e.g., during the radio resource control (RRC) configuration) to indicate that a UE supports dual link handover.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus serves data to a UE or receives data from the UE via a first communication link that uses a first RAT, transmits a configuration message to the UE indicating that data will be served or received via a second communication link that uses a second RAT, and initiates a configuration procedure to switch service or reception of data from the first communication link that uses the first RAT to the second communication link that uses the second RAT.
Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) may receive data from both a source base station and a target base station during handover. For example, the UE may refrain from resetting or reestablishing media access control (MAC) and packet data convergence protocol (PDCP) layer configurations until after a successful access procedure is performed with the target base station. In some cases, a single radio link control (RLC)/PDCP stack may be used during handover procedures. A source base station may, for example, forward data to a target base station after receiving a handover execution message. A UE may identify and resolve any duplicate data sent by both base stations during the transition. Additional signaling may be used (e.g., during the radio resource control (RRC) configuration) to indicate that a UE supports dual link handover.
Abstract:
A device may support communication without a radio link control (RLC) layer, which may include receiving a packet data convergence protocol (PDCP) service data units (SDUs) for multiple radio bearers at a PDCP layer. The multiple radio bearers may have different reliability or delay targets, and a reordering procedure at the PDCP layer may be conducted on the different radio bearers. The reordering procedure may be a same reordering procedure for each of the radio bearers, with one or more parameters that may be adjusted based on one or both of the reliability target or delay target of the radio bearer.
Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) may receive data from both a source base station and a target base station during handover. For example, the UE may refrain from resetting or reestablishing media access control (MAC) and packet data convergence protocol (PDCP) layer configurations until after a successful access procedure is performed with the target base station. In some cases, a single radio link control (RLC)/PDCP stack may be used during handover procedures. A source base station may, for example, forward data to a target base station after receiving a handover execution message. A UE may identify and resolve any duplicate data sent by both base stations during the transition. Additional signaling may be used (e.g., during the radio resource control (RRC) configuration) to indicate that a UE supports dual link handover.
Abstract:
An example computing device may include memory and one or more processors. The one or more processors may be configured to parallel entropy decode encoded video data from a received bitstream to generate entropy decoded data. The one or more processors may be configured to predict a motion vector based on the entropy decoded data. The one or more processors may be configured to decode a motion vector residual from the entropy decoded data. The one or more processors may be configured to add the motion vector residual and motion vector. The one or more processors may be configured to warp previous reconstructed video data with an overlapped block-based warp function using the motion vector to generate predicted current video data. The one or more processors may be configured to sum the predicted current video data with a residual block to generate current reconstructed video data.
Abstract:
A device may support communication without a radio link control (RLC) layer, which may include receiving a packet data convergence protocol (PDCP) service data units (SDUs) for multiple radio bearers at a PDCP layer. The multiple radio bearers may have different reliability or delay targets, and a reordering procedure at the PDCP layer may be conducted on the different radio bearers. The reordering procedure may be a same reordering procedure for each of the radio bearers, with one or more parameters that may be adjusted based on one or both of the reliability target or delay target of the radio bearer.