Abstract:
Various aspects of the present disclosure provide for conditionally disabling discontinuous reception (DRX). For example, DRX may be disabled if there is a loss of DRX synchronization, a loss of signal radio bearer traffic, a poor radio frequency condition, a low signal-to-interference ratio estimate, a low transmit power condition, or a drop in transmit power. Various aspects of the present disclosure provide for determining that an access terminal and the network are not in synchronization (e.g., DRX synchronization), and attempting to re-synchronize the access terminal and the network. In cases where a loss of DRX synchronization involves one entity having DRX enabled while another entity has DRX disabled, DRX may be temporarily disabled until synchronization is restored. In cases where a loss of DRX synchronization involves different entities using different subframe indices, the subframe index used by one of the entities may be changed to restore synchronization.
Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) may monitor a narrowband (e.g., a single carrier, anchor carrier, etc.) for a control message that includes a grant for downlink data transmissions. The narrowband containing the control message may be a portion of a system bandwidth. The UE may then monitor a wideband (e.g., all or multiple carriers of the system bandwidth) for data according to the control message. Monitoring the wideband may include additional or alternate circuitry being powered (e.g., receiver circuit switching) to enable reception on an increased range of frequency spectrum. In some examples, a gap or narrowband data transmission may be scheduled between the control message and the grant to allow grant processing and receiver circuitry switching at the UE. In some cases, the control message and data transmission may be received in the same or different transmission time intervals (TTIs).
Abstract:
Beamforming in time division duplex (TDD) multiple input, multiple output (MIMO) systems is discussed involving user equipments (UEs) having asymmetric antenna configurations. Aspects of the present disclosure use different combinations of signaling overhead and feedback along with leveraging the channel reciprocity characteristics of TDD systems in order to determine channel estimates for determining beamforming vectors. Additional aspects determine scheduling between UEs with symmetric receiver/transmission chains and asymmetric receiver/transmission chains to optimize reference signal overhead for groups of UEs with common beamforming processes.
Abstract:
Aspects described herein relate to configuring a discontinuous receive (DRX) mode in wireless communications. A transmission burst can be received over a communication frame, wherein the transmission burst includes a scheduling indication. A DRX OFF mode can be entered to suspend communication resources during at least an off period corresponding to a portion of a time period for the transmission burst based at least in part on the scheduling indication. A DRX ON mode can be entered to activate the communication resources during an on period corresponding to another portion of the time period subsequent to the off period defined for the transmission burst or a different time period subsequent to the time period defined for the transmission burst based at least in part on the scheduling indication.
Abstract:
Methods and apparatus for wireless communications are described. A method of wireless communications includes determining an energy for a first signal received at a first finger of a rake receiver after a reference signal is received at a second finger of the rake receiver, determining an energy for a second signal received at a third finger of a rake receiver before the reference signal is received at the second finger of the rake receiver, and selecting the first signal as a new reference signal when the energy of the first signal exceeds the energy of the second signal by a predefined threshold amount. In another aspect, a method includes assigning a signal received at a rake receiver to a finger of the rake receiver, and deassigning the finger if the signal has an energy level below a preselected lock threshold energy for a predefined time.
Abstract:
Aspects of the disclosure are directed to estimating a signal to interference ratio. A signal energy estimate corresponding to a received data transmission is generated. A noise to interference ratio estimate corresponding to the received data transmission is generated. A bias, corresponding to the noise to interference ratio estimate, is subtracted from the signal energy estimate. A signal to interference ratio estimate is determined corresponding to the signal energy estimate less the bias, and the noise to interference ratio estimate.
Abstract:
To create gaps in communication activity to perform inter radio access technology (IRAT) measurement, a user equipment may isolate silent periods during voice communications. During those silent periods, instead of transmitting special bursts with erasure packets indicating silent periods, the UE may allocate the time slots that would otherwise have sent the special bursts and indicate those slots as idle so they may be used for other purposes, such as IRAT measurement.
Abstract:
Aspects of the disclosure are directed to estimating a signal to interference ratio. A signal energy estimate corresponding to a received data transmission is generated. A noise to interference ratio estimate corresponding to the received data transmission is generated. A bias, corresponding to the noise to interference ratio estimate, is subtracted from the signal energy estimate. A signal to interference ratio estimate is determined corresponding to the signal energy estimate less the bias, and the noise to interference ratio estimate.
Abstract:
Methods and apparatus for wireless communications are described. A method of wireless communications includes determining an energy for a first signal received at a first finger of a rake receiver after a reference signal is received at a second finger of the rake receiver, determining an energy for a second signal received at a third finger of a rake receiver before the reference signal is received at the second finger of the rake receiver, and selecting the first signal as a new reference signal when the energy of the first signal exceeds the energy of the second signal by a predefined threshold amount. In another aspect, a method includes assigning a signal received at a rake receiver to a finger of the rake receiver, and deassigning the finger if the signal has an energy level below a preselected lock threshold energy for a predefined time.
Abstract:
Disclosed are methods and apparatus for rejecting unreliable downlink (DL) transmit power control (TPC) commands in windup mode. In one aspect, the method includes receiving by a user equipment (UE) a plurality of DLTPC commands from a base station, analyzing on one or more transmitted uplink (UL) TPC commands, detecting a windup mode based on the one or more DLTPC and ULTPC commands, and rejecting one or more DLTPC down commands in the windup mode.