Abstract:
Aspects of the present disclosure provide a method for wireless communications by a user equipment (UE). The method generally includes receiving a measurement configuration, wherein the measurement configuration indicates at least one or more frequency bands, determining, based on one or more parameters, a periodicity for measuring the at least one or more frequency bands, and performing measurements of the at least one or more frequency bands according to the determined periodicity.
Abstract:
Certain aspects of the present methods for handling user equipment (UE) pages in a Radio Resource Control (RRC) connected mode of the UE. Aspects of the present disclosure may effectively scale a point (in time) until which the UE shall handle pages in the RRC connected mode, and after which the UE detects out-of-sync with the NW, which may allow the UE to performs procedures that may help enhance user experience.
Abstract:
A method for determining candidate radio access technology (RAT) layers includes selecting one or more initial candidate RAT layer, for each configured RAT type of a UE, for a target RAT candidate list. The target can be for redirection or handover, for example. Each initial candidate RAT layer is selected regardless of network indicated RAT priorities and measurement object IDs. The method also includes selecting additional candidate RAT layers, for the list, based on the network indicated RAT priorities or the measurement object IDs. The method may be specified for when a UE is in a connected mode or an idle mode.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may acquire a scheduling system information block (SIB) that includes scheduling information for a set of SIBs. The UE may detect a failure to acquire a SIB, included in the set of SIBs, using the scheduling information. The UE may acquire an updated scheduling SIB, that includes updated scheduling information for the set of SIBs, based at least in part on detecting the failure to acquire the SIB included in the set of SIBs. The UE may acquire the SIB, included in the set of SIBs, using the updated scheduling information. Numerous other aspects are provided.
Abstract:
Various embodiments include methods, components and wireless devices configured to identify illegitimate base station. The processor of the wireless device may determine that a device in communication with the wireless device is a suspect base station. The processor may send a fabricated message to the device, and may receive one or more response messages from the device. The processor may determine whether one or more of the response messages received from the device is an appropriate response or an inappropriate response to the fabricated message. In response to determining that a response message is an inappropriate response, the processor may determine that the device is an illegitimate base station. In response to determining that the device is an illegitimate base station, the wireless device may perform a protective action.
Abstract:
Aspects are provided which allow an apparatus to efficiently indicate downgraded band combinations associated with carrier aggregation (CA) to a base station, in which one or more UE capabilities such as the DL MIMO of certain supported band combinations may be downgraded in exchange for other UE capabilities such as FD-MIMO and 256/1024QAM. The apparatus, which may be a UE, receives a request from a base station for information associated with downgraded band combinations and for information corresponding to at least one UE capability associated with each of the downgraded band combinations. After receiving the request, the UE sends, to the base station, information indicating the downgraded band combinations and the at least one UE capability. The UE may thus report downgraded band combinations for a subset of supported band combinations as requested by the base station, thereby minimizing capability reporting of the UE.
Abstract:
Techniques for recovering quickly from a radio link failure (RLF) by identifying potentially strong candidate cells, while avoiding the conventional delays from relying only on initial ACQ DB scans followed by band-scanning, are disclosed. In one aspect, a wireless apparatus such as a user equipment (UE) may identify a radio link failure (RLF) of an existing wireless connection. The UE may prioritize, during an RLF recovery procedure for restoring the connection, candidate cells using connection criteria from one or more measurement reports. The UE can thereupon restore the connection using a cell having a highest priority. In various configurations, the UE can use cells from A3, A4, A5, inter-RAT or periodic measurement reports to reestablish a stronger connection in a faster time.
Abstract:
Aspects of the present disclosure provide techniques to enable enhanced machine type communication (s) (eMTC) and/or narrowband Internet-of-Things (NB-IoT) devices to transition to idle mode after releasing a connection, such as a radio resource control (RRC) connection, more quickly than with previously known techniques. An example method includes determining, based on an indication received in a narrowband signal on a narrowband region of a bandwidth comprising a plurality of narrowband regions, whether to wait for a delay period, determined based on a configuration received from a network entity, before releasing a radio resource control (RRC) connection and releasing the RRC connection at a time in accordance with the determination.
Abstract:
A method, apparatus, and computer-readable medium that reduce UE capability message sizes are disclosed. The apparatus receives a request for UE capability information, wherein the request indicates at least one network supported UE capability. The UE sends a targeted response indicating a capability specific to the network supported UE capability and refrains from indicating other capabilities of the UE that are not indicated by the network in the request. The request may comprise a plurality of supported CA band combinations and a network-specific set of features supported in connection with the plurality of CA band combinations. The response may comprise, for each CA band combination in the plurality of requested CA band combinations, an indication of whether the CA band combination is supported by the UE and a separate indication of support or a lack of support for each feature in the set of network-specific features when operating in the CA band combination.
Abstract:
Methods and apparatus for enhanced radio resource control (RRC) reestablishment in a communication system include addressing repeated radio link failures (RLFs). For example, the methods and apparatus include incrementing a counter value associated with a first cell based on a detection of a RLF by a user equipment (UE) in a RRC connected state with the first cell. The methods and apparatus further include determining that the counter value meets or exceeds a first barring threshold value within a cell barring evaluation time duration. Additionally, the methods and apparatus include prohibiting the UE from performing an RRC reestablishment procedure with the first cell for a first barring time duration.