Abstract:
The present disclosure provides methods and apparatuses for performing channel estimation in a wireless environment using a Primary Physical Common Control Channel (P-CCPCH) to aid in channel estimation. For example, according to an example method provided by the present disclosure, a user equipment (UE) may receive a pilot signal and a Primary Physical Common Control Channel (P-CCPCH) signal from a network entity. In an aspect, the P-CCPCH signal may include initial broadcast channel (BCH) data layered thereon. Furthermore, the UE may predict estimated P-CCPCH data based on the initial BCH data. Additionally, in an aspect, the UE may estimate a channel based on at least the estimated P-CCPCH data and the pilot signal. As such, more reliable channel estimation is possible in wireless systems, such as at UE locations at the geographical periphery of a network entity serving area.
Abstract:
Operating at least one low duty cycle (LDC) controller to maintain synchronization between the LDC controller and a plurality of LDC terminals operating over a communication network using only overhead channels of the network and conforming to the protocol and timing of said network, wherein synchronization between the LDC controller and the plurality of LDC terminals is maintained separately from the protocol and timing of the communication network, and enables the LDC controller to schedule power down and wake up of the plurality of LDC terminals for durations longer than allowable under the protocol and timing of the communication network.
Abstract:
The present disclosure provides methods and apparatuses for performing channel estimation in a wireless environment using a Primary Physical Common Control Channel (P-CCPCH) to aid in channel estimation. For example, according to an example method provided by the present disclosure, a user equipment (UE) may receive a pilot signal and a Primary Physical Common Control Channel (P-CCPCH) signal from a network entity. In an aspect, the P-CCPCH signal may include initial broadcast channel (BCH) data layered thereon. Furthermore, the UE may predict estimated P-CCPCH data based on the initial BCH data. Additionally, in an aspect, the UE may estimate a channel based on at least the estimated P-CCPCH data and the pilot signal. As such, more reliable channel estimation is possible in wireless systems, such as at UE locations at the geographical periphery of a network entity serving area.
Abstract:
Methods and apparatus for processing data received at a user equipment comprises determining a protocol data unit (PDU)-specific Layer 1 decoding metric of a Layer 1 decoded PDU. The methods and apparatus further comprises determining whether to perform a Layer 2 decoding of the Layer 1 decoded PDU based on the PDU-specific Layer 1 decoding metric.
Abstract:
Operating at least one low duty cycle (LDC) controller to maintain synchronization between the LDC controller and a plurality of LDC terminals operating over a communication network using only overhead channels of the network and conforming to the protocol and timing of said network, wherein synchronization between the LDC controller and the plurality of LDC terminals is maintained separately from the protocol and timing of the communication network, and enables the LDC controller to schedule power down and wake up of the plurality of LDC terminals for durations longer than allowable under the protocol and timing of the communication network.