Abstract:
Apparatus, methods, and computer program product for wireless communication, including receiving a plurality of chips in a time division synchronous code division multiple access (TD-SCDMA) network; performing channel matched filtering, despreading, and descrambling on the plurality of chips to determine a plurality of received symbols for each of a plurality of cells; performing symbol-level inter-cell interference cancellation on the plurality of received symbols to determine a plurality of serving cell symbol estimates; and performing multi-user detection on the plurality of serving cell symbol estimates to determine a plurality of detected serving cell symbols.
Abstract:
A user equipment (UE) may employ Timing Advance (TA) reporting to detect possible error conditions during communication between a base station and the UE. In some instances, the UE receives commands to change a timing advance value. The UE declares an error condition when a timing advance value compared with a reference timing advance value changes more than a threshold amount during a specified time period.
Abstract:
A user equipment (UE) may improve scheduling of inter radio access technology (IRAT) measurement during continuous data transmission, for example in a High Speed-Physical Downlink Shared Channel (HS-PDSCH). The UE may determine whether an IRAT measurement is desired. The UE may also perform the IRAT measurement during a scheduled downlink data subframe when it is determined the IRAT measurement is desired, without losing the scheduled downlink data.
Abstract:
A user equipment (UE) prioritizes searches and/or measurements of neighbor cells/frequencies based on a level of mobility of a UE. In one instance, the UE identifies a priority of a layer of a radio access technology (RAT) to be measured or searched and identifies a level of mobility of the UE. A sensor module of the UE may determine the level of mobility of the UE and generate an indication corresponding to the level of mobility of the UE. The UE prioritizes a periodicity of interlayer search and/or measurement based on the priority of the layer to be measured and the level of the mobility of the UE.
Abstract:
Aspects of the methods and apparatus relate to performing call recovery after a call drop. A cell selection update procedure may be initiated to recover a call in response to the call being dropped with a serving cell. Link conditions may be determined for the serving cell and for different candidate cells. The aspects of the methods and apparatus also include selecting a cell, based on the link conditions, from among the serving cell and a candidate cell with a highest signal power parameter in a Primary Common Control Physical Channel (PCCPCH) across a set of neighboring frequencies of the different candidate cells. Call recovery may be performed using the selected cell. In some aspects, the highest signal power parameter may be a highest Received Signal Code Power (RSCP).
Abstract:
When reporting a channel quality metric, such as a channel quality index (CQI) to a base station, a user equipment (UE) may base its report on a calculated spectral efficiency for allocated data channels. The UE may calculate a spectral efficiency metric over a number of subframes to arrive at an average spectral efficiency measurement which may be converted to CQI and reported to a base station.
Abstract:
The various embodiments provide methods implemented in a multi-RF communication device for managing a victim subscription's de-sense by proactively implementing an RF coexistence management strategy on the victim subscription when an RF coexistence event starts. In various embodiments, a multi-RF communication device may implement an RF coexistence management strategy by determining when an aggressor subscription will de-sense a victim subscription and configuring the victim to anticipate and mitigate de-sense during the aggressor's transmissions. Thus, the various embodiments may provide dramatic improvements to the victim's overall reception performance and overall user experience.
Abstract:
The present methods and apparatus relate to interference mitigation at a user equipment during wireless communication, comprising determining that a first portion of a first radio access technology (RAT) activity scheduled during a first time slot overlaps in duration with a second portion of a second RAT activity scheduled during a second time slot; excluding the first portion of the first RAT activity based at least in part on determining that the first portion of the first RAT activity overlaps in duration with the second portion of the second RAT activity; and performing a non-overlap portion of the first RAT activity during the first time slot, wherein the non-overlap portion of the first RAT activity is a portion of the first RAT activity that remains after excluding of the first portion of the first RAT activity.
Abstract:
A user equipment (UE) controls power consumption of the UE based on mobility information and channel conditions experienced by the UE. In one instance, the UE determines its level of mobility based on a Doppler frequency spread of received communications. The UE disables a motion sensor when the level of mobility is above a first threshold. The UE then controls the communications based on the motion sensor and channel conditions experienced by the UE when the level of mobility is below the first threshold.
Abstract:
Methods and apparatus for wireless communication for improving handover between a network and a user equipment (UE) when a measurement report is received. Aspects of the methods and apparatus relate to determining the quality of a serving cell associated with a fast handover performance threshold. When the fast handover performance threshold is breached, the UE may transmit a measurement report requesting a handover to a target cell. Upon requesting a handover to a target cell when the fast handover performance threshold is breached, the UE receives a handover trigger allowing handover to a target cell.