Abstract:
Techniques for determining a Round Trip Time (RTT) calibration value are disclosed. An example of a method according to the disclosure includes receiving a fine timing measurement (FTM) exchange between an initiating station and a responding station, calculating a plurality of differential round trip time (RTT) measurements based on the FTM exchange, calculating a responding station calibration value based on the plurality of differential RTT measurements, and transmitting the responding station calibration value to the responding station.
Abstract:
Techniques for providing a secure Fine Timing Measurement (FTM) exchange between two wireless transceivers are disclosed. An example of a method according to the disclosure include transmitting a protected FTM range request message with a Dialog Token of a FTM frame, receiving a protected FTM range report message from a station, wherein the protected FTM range report message includes FTM information, and authenticating the station based at least in part on the FTM information included in the protected FTM range report message.
Abstract:
Certain aspects of the present disclosure generally relate to beamforming training for a sector corresponding to a line of sight (LOS). For example, certain aspects of the present disclosure provide an apparatus for wireless communications. The apparatus generally includes an interface for obtaining a plurality of frames from a wireless node during a sector sweep procedure, and a processing system configured to select a frame of the plurality of frames as corresponding to a line of sight (LOS) between the apparatus and the wireless node based on a relative time of flight (RTOF) of the frame, and perform beamforming using the selected frame.
Abstract:
Techniques for exchanging secure FTM messages are disclosed. An example of a wireless transceiver system for providing a secure Fine Timing Measurement (FTM) exchange includes a memory and a processor configured to obtain a initial-secure-token value and a secure-token-response value via an out-of-band signal, generate a FTM Request message including the initial-secure-token value, a transmitter to send the FTM Request message to a responding station, and a receiver to receive a FTM Response message including the secure-token-response value from the responding station, such that the at least one processor is configured to determine a Round Trip Time (RTT) value based at least in part on the FTM Response message.
Abstract:
In one aspect, a method performed by an access point in a wireless local area network (WLAN), includes receiving a first ranging request message from a first device and monitoring for a second ranging request message from a second device on a channel of the WLAN. The first ranging request message includes a device identifier of the first device and the second ranging request message includes a device identifier of the second device. In response to receiving the second ranging request message, the access point combines the device identifier of the first device, first timing information associated with the first ranging request message, the device identifier of the second device, and second timing information associated with the second ranging request message into a single ranging response message. The access point then broadcasts the single ranging response message on the channel of the WLAN.
Abstract:
Methods and apparatuses are presented for obfuscating the locations of terrestrial wireless transceivers, including wireless access points and femtocells. According to some embodiments, a method may receive, by a mobile device, data for a terrestrial wireless transceiver, wherein the data includes location coordinates of the terrestrial wireless transceiver, and wherein the location coordinates include an error term. Additionally, the method may include determining the error term based on the data. Furthermore, the method may include determining a corrected location of the terrestrial wireless transceiver by removing the error term from the location coordinates. In some instances, the data can further include a unique identifier associated with the terrestrial wireless transceiver, and wherein the error term is further determined based on the unique identifier.
Abstract:
Disclosed herein are techniques for timing synchronization between a first wireless device and a second wireless device. The techniques include sending a first message by the first wireless device to the second wireless device, obtaining a first timestamp at the first wireless device by the first wireless device, and receiving, by the first wireless device, a fine timing measurement frame from the second wireless device in response to the first message. The fine timing measurement frame includes at least a part of a second timestamp from the second wireless device. The techniques further include determining by the first wireless device that the first wireless device is not synchronized to the second wireless device based at least partially on the part of the second timestamp and the first timestamp.
Abstract:
Disclosed are implementations, including a method, performed at a processor-based mobile device, that includes receiving at the mobile device antenna information for a wireless node, including a transmitter gain for the wireless node in at least one message transmitted to the mobile device. The at least one message includes, a beacon frame message, a fine timing measurement (FTM) protocol-based message, and/or an assistance data message transmitted from a remote central repository. The method also includes deriving an estimate of a receiver gain for a receiver of the mobile device based, at least in part, on the transmitter gain for the wireless node, and adjusting one or more signal strength values determined for signals received from the wireless node based on the estimate of the receiver gain of the receiver of the mobile device derived based, at least in part, on the transmitter gain for the wireless node.
Abstract:
Disclosed are methods, devices, systems, apparatus, servers, computer-/processor-readable media, and other implementations, including a method, performed at a processor-based wireless mobile device, that includes receiving, by the mobile device, signals that include at least one message comprising antenna information for a first wireless node transmitting the signals, and transmitting, by the mobile device, an information message including the antenna information for the first wireless node to a remote device configured to receive and store antenna data for multiple wireless nodes obtained by one or more wireless devices while visiting respective areas covered by the multiple wireless nodes.
Abstract:
A method includes receiving, at a first device, a packet from a second device. The method also includes detecting receipt of the packet at a detection circuit. The method further includes, in response to detecting the receipt of the packet, capturing a time of arrival timestamp corresponding to the packet at a capture circuit. The method also includes receiving, at the first device, a time of departure timestamp corresponding to the packet from the second device. The time of departure timestamp indicates a time when the packet is sent from the second device. The method further includes performing a comparison of the time of arrival timestamp and the time of departure timestamp.