Abstract:
Mobile devices are used as temporary location anchor points, e.g., to supplement fixed location permanent location anchor points, in a wireless communications system in which mobile device locations are determined. A mobile device receives a command or request to operate as a location anchor point. In some embodiments, the command includes time information indicating the amount of time the mobile device is to operate as a location anchor point. In some embodiments, a mobile device operating as a location anchor point reports a received signal strength measurement along with information identifying the device from which the signal was received to a network element, e.g., a location server node. In some embodiments, a mobile device operating as a location anchor point broadcasts a signal providing location information. The mobile device receives compensation for operating as a location anchor point. Compensation may be monetary, services, or benefits provided by the network.
Abstract:
Methods, systems, and devices are described for transmitting an identifier using visible light communication (VLC) and for generating a plurality of identifiers for transmission using VLC. Input identifying an illumination factor associated with a light source is received. A first set of modulation parameters is modified for transmitting the identifier using VLC. The first set of modulation parameters is modified based on the illumination factor. A signal, in which the identifier is encoded, is applied to the light source. The signal is applied according to the first set of modulation parameters. Another method includes identifying a number of light transmitting devices, generating a plurality of identifiers based on the identified number of light transmitting devices, storing the generated identifiers, determining a plurality of cyclic shifts for each identifier in the plurality of identifiers, and removing identifiers from the plurality of identifiers that match the identified cyclic shifts.
Abstract:
A method, an apparatus, and a computer program product for communication are provided. The apparatus obtains a message for communication using visible light communication (VLC) through a light emitting diode (LED) luminary device and formats the message using a synchronization signal followed by one or more data signals. The synchronization signal and/or the one or more data signals are modulated using a Frequency Shift Keying (FSK) modulation scheme. The apparatus further receives a dimming level value associated with a brightness of light to be emitted from the LED luminary device, generates a waveform with frequencies based on the formatted message and a duty cycle for the LED luminary device based on the dimming level value, and sends the generated waveform to the LED luminary device for communication using VLC.
Abstract:
Methods, apparatus, systems, and devices are described for using a mobile device equipped with an image sensor to retrieve information associated with a light fixture. A method of using a mobile device equipped with an image sensor to retrieve information associated with a light fixture may include capturing, at the image sensor, an image of an illuminated indicia. The illuminated indicia may be co-located with the light fixture. At least one characteristic of the illuminated indicia may be determined from the image of the illuminated indicia. Information associated with the at least one characteristic of the illuminated indicia may be retrieved.
Abstract:
Disclosed are methods, systems, devices, apparatus, computer-/processor-readable media, and other implementations, including a method to decode a visible light communication (VLC) signal by capturing images of a light source emitting a light modulated signal comprising a temporal sequence of symbols to determine decoded symbols and to further determine at least one codeword from a list of candidate codewords.
Abstract:
A hybrid communications system implements different communication technologies to communicate data and information for particular communications directions in different portions of the system. Power line communications (PLC) signaling is used to deliver data and information from a gateway device to a light access point. Visible light communications (VLC) signaling is used to communicate data and information from the light access point to a user equipment (UE) device. Wireless radio signaling, wireless infrared (IR) signaling, or a combination of wireless IR signaling and PLC signaling is used to communicate data/information from the UE device to the gateway device. To efficiently control the VLC communications channel between the light access point and UE device, the UE device measures the VLC channel, e.g., calculating SNRs on a per VLC tone basis, and communicating VLC channel quality feedback information to the gateway device, which is forwarded to the light access point.
Abstract:
Various exemplary methods and apparatus are directed to using Visible Light Communication (VLC) in a downlink, e.g., a supplemental downlink, in combination with a wireless radio downlink/uplink pair. A gateway is coupled, via a wireline link, to a VLC access point. In some embodiments, the gateway includes a wireless radio base station. A user equipment device detects a visible light signal from the VLC access point, and transmits a radio signal to a communications device, e.g., a gateway including a base station or a macro base station, indicating that the UE device is in a VLC coverage area. The gateway configures the VLC access point to serve as a supplemental wireless cell which supports downlink communications. The gateway sends traffic signals to the VLC access point, via the wireline, which are converted by the VLC access point into VLC signals which are transmitted. The UE device receives VLC downlink traffic signals and transmits a corresponding acknowledgment signal via an uplink radio channel.
Abstract:
Methods, systems, and devices are described for transmitting an identifier using visible light communication (VLC) and for generating a plurality of identifiers for transmission using VLC. Input identifying an illumination factor associated with a light source is received. A first set of modulation parameters is modified for transmitting the identifier using VLC. The first set of modulation parameters is modified based on the illumination factor. A signal, in which the identifier is encoded, is applied to the light source. The signal is applied according to the first set of modulation parameters. Another method includes identifying a number of light transmitting devices, generating a plurality of identifiers based on the identified number of light transmitting devices, storing the generated identifiers, determining a plurality of cyclic shifts for each identifier in the plurality of identifiers, and removing identifiers from the plurality of identifiers that match the identified cyclic shifts.
Abstract:
A hybrid communications system implements different communication technologies to communicate data and information for particular communications directions in different portions of the system. Power line communications (PLC) signaling is used to deliver data and information from a gateway device to a light access point. Visible light communications (VLC) signaling is used to communicate data and information from the light access point to a user equipment (UE) device. Wireless radio signaling, wireless infrared (IR) signaling, or a combination of wireless IR signaling and PLC signaling is used to communicate data/information from the UE device to the gateway device. To efficiently control the VLC communications channel between the light access point and UE device, the UE device measures the VLC channel, e.g., calculating SNRs on a per VLC tone basis, and communicating VLC channel quality feedback information to the gateway device, which is forwarded to the light access point.
Abstract:
A hybrid communications system implements different communication technologies to communicate data and information for particular communications directions in different portions of the system. Power line communications (PLC) signaling is used to deliver data and information from a gateway device to a light access point. Visible light communications (VLC) signaling is used to communicate data and information from the light access point to a user equipment (UE) device. Wireless radio signaling, wireless infrared (IR) signaling, or a combination of wireless IR signaling and PLC signaling is used to communicate data/information from the UE device to the gateway device. To efficiently control the VLC communications channel between the light access point and UE device, the UE device measures the VLC channel, e.g., calculating SNRs on a per VLC tone basis, and communicating VLC channel quality feedback information to the gateway device, which is forwarded to the light access point.