Abstract:
A solar cell module production method involves applying an adhesive on a light-receiving surface and a rear surface of a solar cell having electrodes on the light-receiving surface and the rear surface, and positioning and attaching a wiring material on the adhesive. Specifically, the solar cell, which is positioned with the light-receiving surface facing upward, is inverted so that the rear surface is facing upward, and the adhesive is applied on the rear surface; and then the solar cell is inverted once again so that the light-receiving surface is facing upward, and the adhesive is applied to the light-receiving surface.
Abstract:
A solar cell module includes: a light-diffusing member adjacent to a solar cell; a tab line disposed on front surfaces of solar cells and having a light-diffusing shape on a light-entering side; and a protective member having first and second principal surfaces. When an average distance between a front surface of the solar cell and the second principal surface is expressed as D, a refractive index of the protective member is expressed as n, and a critical angle for total reflection satisfying sin R=1/n is expressed as R, the tab line is disposed in a zone other than a zone between a position at a distance of 3.46×D from, among ends of the light-diffusing member, an end closest to the solar cell and a position at a distance of 2×D×tan R from, among the ends, an end farthest from the solar cell.
Abstract:
A solar cell module includes: two solar cells adjacent to each other in a direction parallel to a light-receiving surface; a tab line which is disposed on a front surface of one of the two solar cells and a back surface of the other of the two solar cells, and electrically connects the two solar cells; and bonding members which bond the tab line to the two solar cells, wherein bonding strength between the tab line and at least one of the two solar cells in an edge area on a side electrically connected with the other of the two solar cells by the tab line is lower than bonding strength between the tab line and the at least one of the two solar cells in a central area.
Abstract:
A method of manufacturing a solar cell module includes: placing a light reflection member across a gap between adjacent two solar cells set on a work table; and attaching the light reflection member to respective ends of the adjacent two solar cells, by thermocompression-bonding respective overlap regions of the light reflection member with the adjacent two solar cells using a compression bonding head that includes: a first thermocompression bonding portion and a second thermocompression bonding portion each having a contact surface that comes into contact with the light reflection member; and a non-thermocompression bonding portion interposed between the first thermocompression bonding portion and the second thermocompression bonding portion and not thermocompression-bonding the light reflection member.
Abstract:
A solar cell module includes solar cells having main surfaces to which inter-cell wiring members are connected, and an insulating member disposed on the main surfaces and the wiring members, and a first lead-out wire provided to the insulating member. The insulating member includes a first insulating layer formed of polyester resin, a second insulating layer formed of polyolefin or EVA and provided between the first insulating layer and the lead-out wires, and a third insulating layer formed of polyolefin or EVA and provided between the first insulating layer and the main surfaces. The third insulating layer has a thickness in a direction perpendicular to the main surfaces larger than a thickness of the second insulating layer.
Abstract:
A solar cell module includes a first solar cell, a second solar cell disposed with a gap from the first solar cell, and a light reflection sheet bridging between the first solar cell and the second solar cell across the gap. The light reflection sheet is at least partially bent between the first and second solar cells.
Abstract:
A solar cell module includes: a solar cell; a light reflector above a surface of the solar cell or around the solar cell, the light reflector being elongated and including a light reflective film and an insulating component; a protective component that covers the surface of the solar cell; and an encapsulant between (i) the solar cell and the light reflector and (ii) the protective component. The light reflective film has an uneven structure in which a recessed portion and a protruding portion are repeated in a direction crossing a longitudinal direction of the light reflector, and a tangential direction of at least part of a ridge line of the protruding portion and the longitudinal direction intersect when the solar cell is seen in a plan view.
Abstract:
A solar cell module includes: a solar cell; a conductive light-reflective film disposed on a back surface side of the solar cell, the conductive light-reflective film extending from an edge portion of the solar cell; an insulating member disposed between a back surface of the solar cell and the conductive light-reflective film; and a back-surface side encapsulant covering the solar cell and the conductive light-reflective film from the back surface side of the solar cell, wherein the insulating member is made of a material harder than a material of the back-surface side encapsulant.
Abstract:
A solar cell module includes: a solar cell group including a plurality of solar cell strings arranged in a second direction, the plurality of solar cell strings each including a plurality of solar cells arranged in a first direction; a terminal box that outputs power from the solar cell group out of the solar cell module; and an interconnect tab that connects the terminal box to a first end solar cell located at an end in the first direction in one of the plurality of solar cell strings that is located at an end in the second direction, and the interconnect tab does not overlap with the first end solar cell.
Abstract:
A solar cell module includes solar cells, each including a first bus bar electrode provided on a first principal surface and a second bus bar electrode provided on a second principal surface; a wiring member connecting the first bus bar electrode of one of adjacent two solar cells and the second bus bar electrode of the other solar cell; and a resin adhesive layer connecting the wiring member and any one of the first bus bar electrode and the second bus bar electrode. A distance between an end portion of the resin adhesive layer on the adjacent side and an end portion, on the adjacent side, of the solar cell provided with the resin adhesive layer is longer than a distance between the end portion of the solar cell and an end portion of the adjacent solar cell.