MODIFIED EXTRACELLULAR MATRIX-BASED HYDROGEL, MANUFACTURING METHOD OF THE SAME AND USE OF THE SAME

    公开(公告)号:US20220218465A1

    公开(公告)日:2022-07-14

    申请号:US17502152

    申请日:2021-10-15

    Abstract: A modified extracellular matrix-based hydrogel according to an example of the present disclosure includes an extracellular matrix-denatured collagen conjugate formed by a Michael addition reaction between an extracellular matrix having an amine group and a denatured collagen into which an ethylenically unsaturated bond functional group is introduced. The modified extracellular matrix-based hydrogel according to the present disclosure exhibits enhanced mechanical properties (e.g., viscoelasticity) compared to the extracellular matrix hydrogel before modification. In addition, it shows a high cell viability when the bioink is prepared by encapsulating cells in a modified extracellular matrix-based hydrogel according to the present disclosure. In addition, when an artificial living tissue for transplantation (for example, artificial corneal tissue) manufactured by 3-D printing bioink according to the present disclosure is transplanted into a damaged cornea, it can be sutured and has a transparency similar to that of the real cornea, and corneal tissue can be reconstructed without other side effects due to its enhanced mechanical properties. Accordingly, the modified extracellular matrix-based hydrogel according to the present disclosure can be applied in tissue engineering fields and related fields requiring improvement in physical properties and is particularly useful as a material for corneal transplants.

    EXTRACELLULAR MATRIX-BASED BIOADHESIVE

    公开(公告)号:US20230111780A1

    公开(公告)日:2023-04-13

    申请号:US17936385

    申请日:2022-09-29

    Abstract: An embodiment of the present disclosure provides an extracellular matrix-based bioadhesive as an adhesive in the form of a composition including an extracellular matrix-containing hydrogel and a gelatin curing agent, wherein the extracellular matrix-containing hydrogel is gelatinized. Since the extracellular matrix-based bioadhesive according to an embodiment of the present disclosure has the same or similar rheological properties as gelatin, the bioadhesive has flowability at a temperature of 30° C. or higher and may be evenly and easily applied to a lesion site in the body. In addition, the extracellular matrix-based bioadhesive according to an embodiment of the present disclosure may adhere well to the lesion site because of a level of adhesive strength that is about 2 to 6 times higher than that of fibrin glue used as a commercial tissue adhesive. In addition, the extracellular matrix-based bioadhesive according to an embodiment of the present disclosure is based on a tissue-derived extracellular matrix, and thus includes a tissue-derived wound healing component or a tissue regeneration component, and may be used for wound healing or tissue regeneration in addition to bioadhesive applications.

Patent Agency Ranking