摘要:
The present invention discloses a sample injection device for sample collection and sample thermal desorption. The device comprises: a sample collection structure; a piston type adsorber having an adsorption cavity capable of being arranged to be in communication with the sample collection structure; a piston cylinder defining a piston chamber that is configured for accommodating the piston type adsorber and configured to be in communication with the adsorption cavity; a thermal desorption chamber that is configured to be in communication with the adsorption cavity and the piston chamber and is configured to thermally desorb the sample adsorbed in the adsorption cavity; and a pump that is configured to be in communication with the piston chamber via a conduit and is configured to pump a sample diffused in an ambient gas into the adsorption cavity through the sample collection structure, the adsorption cavity being configured to adsorb the sample collected by the sample collection structure; the piston type adsorber is configured to be movable between a sample collecting position where the adsorption cavity is located outside the thermal desorption chamber and in communication with the sample collection structure so as to adsorb the sample collected by the sample collection structure and a sample desorbing position where the adsorption cavity is located inside the thermal desorption chamber so that the adsorbed sample is thermally desorbed in the thermal desorption chamber. There are also provided a method of collecting and desorbing a sample by using the abovementioned device, and a trace detection apparatus.
摘要:
A GC-IMS system is disclosed in embodiments of the present invention. The system comprises a sample transfer device. The sample transfer device connects the gas chromatograph to the reaction region and, the sample from the gas chromatograph is transferred to the reaction region by the sample transfer device directly, instead of not through the ionization region. With the GC-IMS system, generation of sample molecular ion fragments can be avoided so that the spectrum is brevity and is easily identified; moreover, the application field of the GC-IMS system is extended to a range of analysis of organic macromolecule samples which have a high polarity, are difficult to volatilize, and are thermally instable. On the other hand, the GC-IMS system overcomes the defect of ion destruction due to neutralization reaction among positive and negative ions so as to evade the detection.
摘要:
The present invention discloses darkroom type security inspection apparatus and method. An apparatus comprises a housing constituting a closed darkroom, and assemblies disposed inside the housing. The assemblies disposed inside the housing are communicated by fittings or connectors and comprises: a sampling assembly comprising a sample collecting unit and a conveyer unit configured to convey an object to be inspected into the sample collecting unit; a sample processing assembly configured to concentrate and analyze the sample; and, an inspecting assembly configured to inspect composition of the sample by means of a gas chromatographic-ion mobility spectrometer (GC-IMS) or a separated ion mobility spectrometer (IMS). The security inspection apparatus of the present invention can perform the sampling easy, rapidly and effectively and perform the inspection accurately and rapidly without destroying and unpacking an object to be inspected, and thus is suitable for requirements of on-site rapid inspection of forbidden items in the airport, customs and the likes.
摘要:
The present disclosure relates to the technical field of CT detection, and in particular to a CT inspection system and a CT imaging method. The CT inspection system provided by the present disclosure comprises a radioactive source device, a detection device, a rotation monitoring device and an imaging device, wherein the detection device obtains detection data at a frequency that is N times a beam emitting frequency of the radioactive source device; the rotation monitoring device detects a rotation angle of the detection device and transmits a signal to the imaging device each time the detection device rotates by a preset angle; the imaging device determines a rotational position of the detection device each time the radioactive source device emits a beam according to the signal transmitted by the rotation monitoring device and the detection data of the detection device.
摘要:
The present disclosure provides a gas chromatography-ion mobility spectrometry apparatus, including a housing, an injection port mounted to and connected with the housing and configured for input of a gas containing a sample therein, a multicapillary column configured for separation of a gas substance and an ion mobility tub configured for analysis of the gas substance. The gas chromatography-ion mobility spectrometry apparatus further includes: a gas path part connected with the ion mobility tube and configured for providing the gas to the ion mobility tube and receiving a gas discharged from the ion mobility tube; and a buffer base part detachably mounted to the housing and configured to isolation vibration outside the buffer base part, the ion mobility tube being disposed on the buffer base part, wherein the gas path part is mounted in an interior space of the buffer base part.
摘要:
The present disclosure proposes a packaging structure for a metallic bonding based opto-electronic device and a manufacturing method thereof. According to the embodiments, the packaging structure for an opto-electronic device may comprise an opto-electronic chip and a packaging base. The opto-electronic chip comprises: a substrate having a first substrate surface and a second substrate surface opposite to each other; an opto-electronic device formed on the substrate; and electrodes for the opto-electronic device which are formed on the first substrate surface. The packaging base has a first base surface and a second base surface opposite to each other, and comprises conductive channels extending from the first base surface to the second base surface. The opto-electronic chip is stacked on the packaging base in such a manner that the first substrate surface faces the packaging base, and the electrodes formed on the first substrate surface of the opto-electronic chip are bonded with corresponding conductive channels in the packaging base.
摘要:
A darkroom type security inspection apparatus and a method of performing an inspection using the darkroom type security inspection apparatus. An apparatus includes a housing constituting a closed darkroom, and assemblies disposed inside the housing. The assemblies disposed inside the housing include: a sample collecting unit configured to collect a sample, a conveyor unit, and a X-ray detection unit to detect a position of the objected to be inspected, wherein the X-ray detection unit is configured to determine the position of the objected to be inspected within the sampling assembly so that the object to be inspected together with the conveyor unit is conveyed to an expected position; and a sample processing assembly, wherein the assemblies disposed inside the housing are communicated by fittings or connectors.
摘要:
A sample introduction device comprises a sampling unit, a gas suction pump, adsorption units, a piston cylinder and a desorption cylinder that comprises a desorption chamber, a carrier-gas inlet, a split/purge vent and an analyzer nozzle communicating with the desorption chamber. A heating film and a temperature sensor are provided on outer wall of the desorption cylinder. The piston cylinder above the desorption cylinder comprises two piston chambers, each of which is provided with the adsorption unit and in communication with the desorption chamber. The piston cylinder comprises a sample-gas inlet connected to the sampling unit and a gas-suction-pump orifice connected to the gas suction pump, each of which can communicate with both piston chambers. Each adsorption unit comprises an adsorption cylinder-like screen for holding adsorbents and a piston rod slidably mounted in the piston chamber. Each adsorption cylinder-like screen can simultaneously communicate with the sample-gas inlet and gas-suction-pump orifice.
摘要:
The present invention discloses a corona discharge assembly, including: an ionization discharge chamber, wherein the ionization discharge chamber includes a metal corona cylinder, and the metal corona cylinder is provided with an inlet of a gas to be analyzed and an annular piece-shaped port which forms a non-uniform electric field with corona pins and is provided with a circular hole at the middle; a rotating shaft is installed on the cylinder wall of the metal corona cylinder in an insulating manner, the rotating shaft is vertical to the axial line of the metal corona cylinder, and a turntable provided with multiple corona pins at the outer edge is installed at the end part of the rotating shaft the axial line of the metal corona cylinder passes in parallel through the rotation plane of the turntable. The present invention further discloses an ion mobility spectrometer using the above-mentioned corona discharge assembly.
摘要:
The present disclosure provides a dual-energy detection apparatus and method. The dual-energy detection apparatus includes an X-ray source configured to send a first X-ray beam to an object to be measured; a scintillation detector configured to work in an integration mode, and receive a second X-ray beam penetrating through the object to be measured to generate a first electrical signal; a Cherenkov detector configured to be located behind the scintillation detector, work in a counting mode, and receive a third X-ray beam penetrating through the scintillation detector to generate a second electrical signal; and a processor configured to output image, thickness and material information of the object to be measured according to the first electrical signal and the second electrical signal. The dual-energy detection method provided by the present disclosure may acquire an image of the object to be measured that is clearer and contains more information.