Abstract:
The present invention provides a method of mobile image identification for flow velocity and the apparatus thereof. The present invention integrates laser-light module and mobile photographing devices such as smartphones, cameras, or tablet computers. After multiple laser spots are projected on the surface of flowing water, water-surface images including the laser spots are photographed continuously. Then the software program of image identification in the mobile photographing device performs calculations and coordinate conversion. According to the difference between multiple water-surface images taken continuously, the flow-velocity information of the water surface is given.
Abstract:
The present invention provides a reflective condensing interferometer for focusing on a preset focus. The reflective condensing interferometer includes a concave mirror set, a convex mirror, a light splitting element, and a reflecting element. The concave mirror set has first and second concave surface portions which are oppositely located on two sides of a central axis passing through the preset focus and are concave on a surface facing the central axis and the preset focus. Light is preset to be incident in parallel to the central axis in use. The convex mirror is disposed between the concave mirror set and the preset focus on the central axis, and is convex away from the preset focus. The light splitting element vertically intersects with the central axis between the convex mirror and the preset focus. The reflecting element is disposed between the light splitting element and the convex mirror.
Abstract:
The present invention relates to a method for measuring cracks remotely and the device thereof. First, multiple laser spots with known a shape are projected onto a remote wall and beside a crack. Then, by using geometric calculations, the relative coordinates of the laser spots on the wail and the real distance can be given and used as the reference length of the crack. Next, a camera is used for taking a picture of the remote crack along with the laser spots; the image identification technology is used for calculating the relevant parameters of the crack. Thereby, to acquire the parameters of the crack, a user needs not to be present at the site for measuring at a short distance or placing a reference object, and thus providing safety and convenience.
Abstract:
An integrated device includes a laser ranging module, a dual-branched fiber bundle, a beam splitter, and an image receiving module. The laser ranging module includes a light source, an optical receiver and a computing unit. The fiber bundle is disposed between the laser ranging module and the beam splitter. A target reflects a measuring beam emitted by the light source to form a reflected beam. The beam splitter splits the reflected beam into a first reflected beam and a second reflected beam. The first reflected beam is transmitted to the optical receiver through the fiber bundle to generate a measurement signal. The computing unit receives the measurement signal to calculate a distance between the target and the fiber bundle. The image receiving module is disposed on the optical path of the second reflected beam to receive the second reflected beam and displays the image of the target.
Abstract:
An image correlation for images having speckle pattern is evaluated. Modulation transfer function (MTF) curves of speckle-pattern images captured at different times are figured out. Whether a correlation value between the MTF curves meets a threshold is checked. If the correlation value is smaller than the threshold, speckle-pattern images are re-selected for re-figuring out the MTF curves and the correlation value. Thus, error of strain and displacement for digital image correlation owing to blurring images of the on-moving target object is figured out; calculation time of the digital image correlation is reduced; and accuracy on measuring physical parameters of the target object before and after movement is improved for digital image correlation.