Abstract:
A clock buffer circuit is provided. The clock buffer circuit receives an input clock signal and generates a delay clock signal. The clock buffer circuit includes an input circuit, an output circuit, a first delay path, and a second delay path. The input circuit receives the input clock signal and generates an output clock signal according to the input clock signal. The output circuit generates the delay clock signal. The first delay path is coupled between the input circuit and the output circuit. The second delay path is coupled between the input circuit and the output circuit. The input circuit selectively provides the output clock signal to a first specific delay path among the first and second delay paths according to a control signal. The output circuit receives the output clock signal which passes through the first specific delay path and outputs the delay clock signal.
Abstract:
A signal generator includes a main ring oscillator and a first ring oscillator. The main ring oscillator is supplied by a power voltage, and is configured to generate an output oscillation signal. The main ring oscillator is coupled through a power mesh to the power voltage. The first ring oscillator is supplied by the power voltage. The first ring oscillator is similar or identical to the main ring oscillator. The first ring oscillator is coupled through the power mesh to the power voltage. The first ring oscillator is used to calibrate a frequency of the output oscillation signal.
Abstract:
The invention provides an inverter. The inverter includes a first converter and a second converter. The first converter is coupled between a supply voltage and an output node of the inverter. The second converter is coupled between the output node of the inverter and a ground voltage. The first converter, the second converter, or both include diode-connected transistors. The propagation delay time of the inverter is substantially a linear function of the temperature of the inverter.
Abstract:
The invention provides an integrated circuit device. The integrated circuit device includes a semiconductor substrate. An isolation structure is positioned in the semiconductor substrate. A first electrode and a second electrode are positioned on the semiconductor substrate and coupled to different voltage supplies. The first electrode laterally or parallelly overlaps the second electrode. The first electrode and the second electrode vertically overlap the isolation structure. As a result, leakage current is mitigated or eliminated so that the reliability and performance of the integrated circuit device are improved.