Abstract:
A wearable sensor apparatus includes a band shaped and sized to be worn on a finger or limb of a user, a plurality of sensor coils configured to detect a magnetic field. A processor configured to calculate a position of the wearable sensor apparatus based upon signals from the plurality of sensor coils, and a communication module configured to transmit the position of the wearable sensor apparatus.
Abstract:
Methods, apparatus and computer-readable storage media for performing foreign object detection (FOD) in a wireless power transfer system. A plurality of FOD measurements may be performed and processed to perform FOD.
Abstract:
A mobile device includes a housing having a conductive region and a wireless power receiver having a receive coil configured to receive wireless power through the conductive region. The thickness of the conductive region is less than δ/10, wherein δ is a skin depth of the conductive region at a primary frequency of an electromagnetic signal that provides the wireless power.
Abstract:
A wireless power assembly including a multi-layer magnetic shield is described. The wireless power assembly includes a wireless power coil and the multi-layer magnetic shield arranged adjacent to the wireless power coil. The magnetic shield includes a first layer comprising a first material and a second layer comprising a second material, wherein the second material has a higher permeability than the first material.
Abstract:
Apparatus and methods for dual-mode wireless power transfer are described. Two power transmit coils may be configured to provide magnetic resonant and magnetic inductance wireless power transfer from a same charging area of a wireless power transmitter. The coils and magnetic backing may be arranged to provide similar power transfer performance for the two power transfer methodologies.
Abstract:
A multi-mode wireless power transmitter includes a first drive circuit of a first type and a second drive circuit of a second type. The first drive circuit is configured to drive a first transmit coil at a first frequency. The second drive circuit is configured to drive a second transmit coil at a second frequency higher than the first frequency.
Abstract:
An apparatus and method for performing foreign object detection for a wireless power transmitter. A matching network and transmit coil are energized, and a resonance is excited. The resonance is allowed to decay. A temporal characteristic of the decay is measured. The temporal characteristic is analyzed to determine whether a foreign object is coupled to an electromagnetic field generated by the transmit coil.
Abstract:
A wireless power system and methods for operating the same are provided for protection of a wireless power receiver during wireless power transfer. A signal strength limit for the wireless power transmitter is determined based upon a receiver limit, a sensitivity of the wireless power receiver and a scaling factor of the wireless power transmitter.
Abstract:
A wireless power transmitter includes a multi-mode drive circuit having a controllable resonant frequency. The multi-mode drive circuit is controlled to have a first resonant frequency to drive wireless power transmission at a first transmit frequency. The multi-mode drive circuit is also controlled to have a second resonant frequency higher than the first resonant frequency to drive wireless power transmission at a second transmit frequency higher than the first transmit frequency.
Abstract:
A wireless power system and methods for operating the same are provided for protection of a wireless power receiver during wireless power transfer. A signal strength limit for the wireless power transmitter is determined based upon a receiver limit, a sensitivity of the wireless power receiver and a scaling factor of the wireless power transmitter.