Abstract:
Various techniques and schemes pertaining to extremely-high throughput (EHT) multi-link maximum channel switching in wireless communications are described. A station (STA) multi-link device (MLD) receives an indication from a reporting access point (AP) affiliated with an AP MLD on one link of multiple links. The STA MLD determines a channel switching time when a reported AP switches from operating in a current channel of the reported AP to operating in a new channel on one other link of the multiple links based on the indication.
Abstract:
A method of data communication for a communication device in a wireless ad hoc network is disclosed. The method comprises receiving a service publish message and a service subscribe message from a first communication device of a first service cluster and a second communication device of a second service cluster respectively, wherein the second communication device subscribes a service from the first communication device, and establishing a third service cluster including the first communication device and the second communication device, wherein a schedule of the third service cluster for the communication device, the first and second communication devices of the third service cluster to wake up for data transmission and reception is determined by the communication device or coordinated by the communication device, the first and the second communication devices.
Abstract:
A method of sub-channel independent network allocation vector (NAV) management by a wireless station (STA) in a wideband wireless communications system is proposed. In the wideband system having multiple sub-bands, each NAV for a corresponding sub-band is independently managed. The protection duration for each NAV is independent for each sub-band and the threshold or update rule for NAV modification is also independent for each sub-band. The threshold or update rule for NAV modification may also be different when the NAV is generated or propagated by an OBSS STA. Furthermore, early termination of NAV is allowed if the NAV is set by an OBSS STA only.
Abstract:
A method for transiting basic service sets (BSSs) in a wireless communications system is provided. A wireless station first detects an integrity of a real-time flow from an access point in a first BSS. The wireless station then sends a request frame to the access point. The request frame comprises a communication condition of the wireless station. The access point responds with information of a plurality of APs and a set of parameters that used to select the APs. The wireless station then determines which AP to be associated according to the information of the plurality of APs and the communication quality of the wireless station.
Abstract:
A method for frame rate control in a transmitter of a wireless communications system comprises generating a frame and a first information corresponding to a first expiration time of the frame by a frame generating module; handling the frame according to the first expiration time by a driver module; and informing the frame generating module an adjusting information according to a first pre-determined rule by the driver module.
Abstract:
A wireless communication method employed by an access point (AP) includes: negotiating with another AP for setting up a coordinated service period (SP), and sending a first announcement frame inside a first basic service set (BSS) to inform that the coordinated SP has been created. The step of negotiating with the another AP for setting up the coordinated SP includes: receiving a request frame from the another AP, wherein the request frame includes a plurality of SP parameters; and sending a response frame to the another AP. The AP belongs to the first BSS, and the another AP belongs to a second BSS different from the first BSS.
Abstract:
A management device accepts a first communications device to join a wireless communications network managed by the management device. The management device registers a service provided by the first communications device. The service is available in accordance with a set of service parameters. The set of service parameters include a schedule of availability. The set of service parameters include at least one parameter selected from the group consisting of a set of one or more starting times, a set of one or more service intervals, a set of one or more service periods, a set of one or more physical media, a set of one or more device identifiers, a set of one or more data sequence identifiers, and at least one medium access mode within the service interval.
Abstract:
Embodiments of the present invention provide secure ranging measurements for wireless devices in multi-user (MU) mode. Specifically, a signaling procedure between an initiating wireless station (ISTA) and a responding wireless station (RSTA) is used to enable protection of randomized LTF sequences used in the secure ranging measurements. The signaling procedure may be performed in a HEz or VHTz mode and may include performing error recovery when operating in the HEz mode.
Abstract:
A management device accepts a first communications device to join a wireless communications network managed by the management device. The management device registers a service provided by the first communications device. The service is available in accordance with a set of service parameters. The set of service parameters include a schedule of availability. The set of service parameters include at least one parameter selected from the group consisting of a set of one or more starting times, a set of one or more service intervals, a set of one or more service periods, a set of one or more physical media, a set of one or more device identifiers, a set of one or more data sequence identifiers, and at least one medium access mode within the service interval.
Abstract:
A unified channel contention scheme is proposed such that spatial reuse can be enabled by a wireless station (STA) when a basic service set (BSS) color of a received signal cannot be resolved. If the detected frame is an intra-BSS frame, then the STA should not contend the channel for the PPDU duration. If the detected frame is an inter-BSS frame, then the STA uses OBSS Packet Detection (OBSS-PD) level as the CCA level for channel contention. Furthermore, when BSS color cannot be resolved, channel contention schemes for WiFi signal and non-WiFi signal are differentiated. If the received signal is detected as WiFi signal, then the STA uses WiFi-SIG Detection (WD) level as the CCA level for channel contention. If the received signal is detected as non-WiFi signal, then the STA uses Non-WiFi-SIG Detection (NWD) level as the CCA level for channel contention.