Abstract:
A reformer-liquid fuel manufacturing system that utilizes an engine to generate hydrogen-rich gas is disclosed. The engine operates at very rich conditions, such as 2.5
Abstract:
Sorbent for reversible warm CO2 capture. The sorbent includes activated carbon impregnated with magnesium oxide, wherein the magnesium oxide constitutes at least 5% by weight of the sorbent.
Abstract:
Sorbent for reversible warm CO2 capture. The sorbent includes activated carbon impregnated with magnesium oxide, wherein the magnesium oxide constitutes at least 5% by weight of the sorbent.
Abstract:
Perovskite compounds that catalyze hydrogenolysis (e.g., hydrodeoxygenation, hydrodenitrogenation, and/or hydrodesulfurization) of heteroatom-containing compounds, as well as associated systems and methods, are generally described. In some embodiments, methods are provided for contacting a perovskite compound with a heteroatom-containing compound (e.g., a compound comprising oxygen, nitrogen, and/or sulfur) in the presence of hydrogen gas (H2) such that the perovskite compound catalyzes hydrogenolysis of the heteratom-containing compound to produce one or more hydrocarbon products (e.g., one or more aromatic hydrocarbons and/or aliphatic hydrocarbons). According to certain embodiments, the perovskite compound has the formula A1−xBxDO3, where A comprises a lanthanide, B comprises an alkaline earth metal, D comprises a transition metal, and x is greater than or equal to 0 and less than or equal to 1. Compounds, systems, and methods described herein may be useful for applications involving petroleum (e.g., crude oil) and/or biofuels.
Abstract:
A reformer-liquid fuel manufacturing system that utilizes an engine to generate hydrogen-rich gas is disclosed. The engine operates at very rich conditions, such as 2.5
Abstract:
A reformer-liquid fuel manufacturing system that utilizes an engine to generate hydrogen-rich gas is disclosed. The engine operates at very rich conditions, such as 2.5
Abstract:
The use of porous materials in the dead space of reciprocating engines is described. The porous material can be used to condition the cylinder gases. In addition, the porous material may include a catalyst for driving chemical reactions. The catalytic process occurs on the porous material, not on the cylinder walls. The engine parameters (number of cycles, number of strokes per cycle, compression ratio, engine speed, cylinder volume, valves timing, gas composition, pressure and temperature) are adjusted to optimize gas compression or chemical reactor performance.
Abstract:
A reformer-liquid fuel manufacturing system that utilizes an engine to generate hydrogen-rich gas is disclosed. The engine operates at very rich conditions, such as 2.5
Abstract:
Sorbent for reversible warm CO2 capture. The sorbent includes activated carbon impregnated with magnesium oxide, wherein the magnesium oxide constitutes at least 5% by weight of the sorbent.