Abstract:
A continuous-time sigma-delta modulator includes a VCO-based quantizer, a rotator, a truncation circuit and a digital-to-analog converter (DAC). The VCO-based quantizer is arranged to generate a thermometer code based on an input signal and a feedback signal. The rotator is coupled to the VCO-based quantizer, and is arranged to generate a phase-shifted thermometer code based on the thermometer code and a phase shift, and generate a rearranged thermometer code based on the phase-shifted thermometer code to comply with a specific pattern. The truncation circuit is coupled to the rotator, and is arranged to extract a most significant bit (MSB) part from the rearranged thermometer code. The DAC is coupled to the truncation circuit, and is arranged to generate the feedback signal according to at least the MSB part. Two alternative continuous-time sigma-delta modulators are also disclosed.
Abstract:
A continuous-time sigma-delta modulator includes a VCO-based quantizer, a rotator, a truncation circuit and a digital-to-analog converter (DAC). The VCO-based quantizer is arranged to generate a thermometer code based on an input signal and a feedback signal. The rotator is coupled to the VCO-based quantizer, and is arranged to generate a phase-shifted thermometer code based on the thermometer code and a phase shift, and generate a rearranged thermometer code based on the phase-shifted thermometer code to comply with a specific pattern. The truncation circuit is coupled to the rotator, and is arranged to extract a most significant bit (MSB) part from the rearranged thermometer code. The DAC is coupled to the truncation circuit, and is arranged to generate the feedback signal according to at least the MSB part. Two alternative continuous-time sigma-delta modulators are also disclosed.
Abstract:
Circuits for compensating delta-sigma modulators for excess loop delay are described. These circuits may be coupled to quantizers, and may configured to select the threshold values supplied to the quantizers for comparison with an analog signal. The threshold values may each be selected from a corresponding plurality of reference values, and may be set such that the numerical order of threshold values varies over time. For example, the threshold value provided to a first comparator of the quantizer may be greater than the threshold value provided to a second comparator of the quantizer in a first time interval, but the opposite scenario may occur in a second time interval. The circuits may include multiplexers for selecting the threshold values, thermometric encoders, reference selectors and reference multiplexers.
Abstract:
Circuits and methods for inter-symbol interference compensation are described. These circuits and methods may be used in connection with delta-sigma analog-to-digital converter. During a sensing phase, a value indicative of the inter-symbol interference may be sensed. The value may be obtained by (1) causing the ADC to generate a first number of transitions during a first time interval; (2) causing the ADC to generate a second number of transitions during a second time interval; (3) sensing the number of logic-0s and logic-1s occurring in the first and second time intervals; and (4) computing the value based at least in part on the number of logic-0s and logic-1s occurring in the first and second time intervals. During a compensation phase, inter-symbol interference may be compensated based on the value obtained in the sensing phase.
Abstract:
A comparator is described. The comparator may be used in several applications, including in digital-to-analog converters (ADC). The comparator may comprise a high-speed amplifier, a low-noise amplifier, a controller and a bi-stable circuit. The high-speed amplifier may be activated during a first period, for example when the comparator tends to exhibit a slow response. During this period, the comparator may sacrifice the noise performance. The low-noise amplifier may be activated during a second period, for example when the difference between the signals appearing as inputs to the comparator is small. The low-noise amplifier may have a gain that is large enough to limit decision errors. The bi-stable circuit, which may be implemented using a latch, may be configured to output a signal equal to one of the supply voltages, in response to receiving the input signal from one of the stages.