Abstract:
A method of uplink shaping and extending UE in RRC Idle Mode is proposed. The UE processes a data packet to be sent to the network. The data packet is associated with a traffic type. If the data packet belongs to a normal traffic type, then the UE enters RRC Connected mode and thereby transmitting the data packet to the network. If the data packet belongs to a background traffic type, then the UE buffers the data packet and the UE is prohibited from entering RRC Connected mode until a triggering condition is satisfied for uplink transmission. The proposed mechanism achieves power saving by reducing the activity of uplink transmission. In addition, the proposed mechanism also reduces signaling overhead to enhance network efficiency.
Abstract:
LTE-WLAN aggregation (LWA) at the radio access network level promises significant gain in system capacity and user quality of experience (QoE). In order to support QoS over LWA, there is a need to develop mechanisms to ensure that the access category (AC) classification chosen by a wireless device (AP in the case of downlink, and UE in case of uplink) is consistent with the QoS requirements of the EPS bearer/DRB and/or subscriber profile to which the traffic belongs. The cellular LTE network can provision QoS for both downlink and uplink data flows that are transferred using LWA access.
Abstract:
A method of uplink shaping and extending UE in RRC Idle Mode is proposed. The UE processes a data packet to be sent to the network. The data packet is associated with a traffic type. If the data packet belongs to a normal traffic type, then the UE enters RRC Connected mode and thereby transmitting the data packet to the network. If the data packet belongs to a background traffic type, then the UE buffers the data packet and the UE is prohibited from entering RRC Connected mode until a triggering condition is satisfied for uplink transmission. The proposed mechanism achieves power saving by reducing the activity of uplink transmission. In addition, the proposed mechanism also reduces signaling overhead to enhance network efficiency.
Abstract:
LTE-WLAN aggregation (LWA) at the radio access network level promises significant gain in system capacity and user quality of experience (QoE). In order to support QoS over LWA, there is a need to develop mechanisms to ensure that the access category (AC) classification chosen by a wireless device (AP in the case of downlink, and UE in case of uplink) is consistent with the QoS requirements of the EPS bearer/DRB and/or subscriber profile to which the traffic belongs. The cellular LTE network can provision QoS for both downlink and uplink data flows that are transferred using LWA access.
Abstract:
Apparatus and methods are provided for selection and data aggregation for the LWA. In one novel aspect, the UE connected with a first RAN receives a LWA assistance configuration and selects a second RAN based on the LWA assistance configuration. The UE aggregates data traffic from the first RAN and the selected second RAN. In one embodiment, the information request-and-response procedure is used, which allows the first RAN to query the UE about its second RAN association status. In another embodiment, the selection request-and-response procedure is used, which allows the first RAN to exercise some control over which base station of the second RAN is selected by the UE and for the UE to send relevant information about its second RAN connectivity to the first RAN. In another novel aspect, the UE selects a DRB based on the LWA DRB configuration through either a NAS procedure or an operator configuration.
Abstract:
A method of collecting and providing traffic statistics in a cellular network in accordance is proposed. A UE establishes an RRC connection with a base station. The UE starts to collect traffic statistics that comprises a CDF curve or a PDF diagram for packet inter-arrival time. The UE may receive a measurement configuration from the base station for the traffic statistics collection. The UE then reports a representation of the traffic statistics to the base station for RRC reconfiguration. The UE may also receive a reporting request from the base station that specifies a representation format. The representation format includes one or more probability values at corresponding inter-arrival time points, at least one slope of the CDF, one or more steep events in the CDF, or a PDF range.
Abstract:
A UE initiates an MMTEL service in RRC Idle mode in a mobile communication network. The UE acquires access control information from a base station. The access control information comprises SSAC configuration information, ACB parameters information, and ACB bypass information. The ACB bypass information indicates whether ACB is applicable to MMTEL service type. The UE then performs SSAC check for the MMTEL service based on the access control information. The UE also performs ACB check for the MMTEL service if ACB is applicable to the MMTEL service. Otherwise, the UE bypasses the ACB check for the MMTEL service. The selective ACB mechanism can prioritize or deprioritize services based on operator's requirement.
Abstract:
Various schemes are provided to improve SR resource utilization by adapting SR resource allocation to traffic pattern. In a first Scheme, SR resource allocation is configured more accurately. In one example, UE provides assistant information for eNB to determine or adjust SR configuration based on the received assistant information. In a second Scheme, multiple SR periods are configured and adapted to traffic pattern. In one example, eNB configures a set of SR resources with multiple SR periods, and UE applies different SR periods based on predefined events. Unused SR resources could be recycled by eNB for PUSCH data transmission. In a third Scheme, multiple SR allocations are configured and adapted to concerned applications. In one example, eNB configures multiple sets of SR resources adapted to predefined applications, and UE applies SR configurations based on corresponding applications. The additional SR configurations could be activated and/or deactivated.
Abstract:
A method of collecting and providing traffic statistics in a cellular network in accordance is proposed. A UE establishes an RRC connection with a base station. The UE starts to collect traffic statistics that comprises a CDF curve or a PDF diagram for packet inter-arrival time. The UE may receive a measurement configuration from the base station for the traffic statistics collection. The UE then reports a representation of the traffic statistics to the base station for RRC reconfiguration. The UE may also receive a reporting request from the base station that specifies a representation format. The representation format includes one or more probability values at corresponding inter-arrival time points, at least one slope of the CDF, one or more steep events in the CDF, or a PDF range.
Abstract:
A method of uplink shaping and extending UE in RRC Idle Mode is proposed. The UE processes a data packet to be sent to the network. The data packet is associated with a traffic type. If the data packet belongs to a normal traffic type, then the UE enters RRC Connected mode and thereby transmitting the data packet to the network. If the data packet belongs to a background traffic type, then the UE buffers the data packet and the UE is prohibited from entering RRC Connected mode until a triggering condition is satisfied for uplink transmission. The proposed mechanism achieves power saving by reducing the activity of uplink transmission. In addition, the proposed mechanism also reduces signaling overhead to enhance network efficiency.