Abstract:
The invention pertains to a method for reading analog and/or digital data stored on a microform in fields by means of a device for accessing the microform, which is connected to a data processing system by a hardware interface. The invention also pertains to a device for implementing the method and to a microform. So that the data acquired by the device can be subjected to further processing in a conventional personal computer, it is proposed according to the invention that the analog and/or digital data stored on the microform be presented to the data processing system by a control unit of the device as if the microform were a conventional removable data storage medium. Finally, an advantageous microform is described, the data on which can be read out quickly and which, because of its design, is suitable for the long-term, safe archiving of data, especially digital data.
Abstract:
A process and an arrangement for the production of molten pig iron or steel pre-products from particulate ferrous material as well as for the production of reducing gas in a meltdown gasifier. A fluidized bed of coke particles is formed by the addition of coal and the injection of oxygen-containing gas. In order to ensure a satisfactory mode of operation of the meltdown gasifier even if coal of inferior quality with a high moisture content and a high portion of volatile matter is used, additional heat is supplied to the meltdown gasifier above the feed lines for the fluidized-bed-forming oxygen-containing gas by burning and/or degassing coal particles separated from the reducing gas.
Abstract:
A method for reading analogue and/or digital data, which are stored in fields on a microform, includes using a device for accessing the microform, which device is connected to a data processing system via a hardware interface. In order to make it possible to further process the data acquired by the device in a conventional personal computer, the analogue and/or digital data stored on the microform are represented by a control unit of the device of the data processing system as if the microform were a conventional replaceable data storage medium. Finally, the microform has a structure that allows the data stored thereon to be read quickly and is also suitable for the long-term and secure archiving of digital data.
Abstract:
In the case of an arrangement comprising a gasifier and a direct reduction shaft furnace positioned above it and which is connected to the gasifier by a connecting shaft, the direct introduction of the reduction gas obtained in the gasifier, even in the case of a high dust proportion, is made possible in that the sponge iron particles are discharged through several radially positioned screw conveyors and the reduction gas is fed to an annular zone formed above the screw conveyors.
Abstract:
A gas ring-laser comprises a ceramic block containing a closed gas-filled channel (12) which extends along the sides of an equilateral triangle and forms a resonant cavity. An anode (64) and cathodes (76, 78) permit the creation of two gas discharges. With the aid of dielectric mirrors (26, 28 and 30), two light beams circulating in opposite directions are guided through the channel. In order to simplify construction, the ceramic block (10) consists of a glass ceramic which is produced from a green ceramic body by sintering. The mirrors (26, 28, 30) are located in adjustable metal holders (80, 82, 84) and fixed in the ceramic block (10) by means of glass solder (98). In addition, the other electrical connections for the electrodes in the cavity are sealed in place by glass solder. The invention also relates to a method for manufacturing such a gas ring-laser. The gas ring-laser may serve as an inertial sensor for measuring angular velocities by means of the Sagnac-effect.
Abstract:
An apparatus for the passivating, multistage compaction of hot iron particles supplied in the form of a packed bed from a reduction unit and for the subsequent breaking apart of the compacted iron band is described. Prior to the final compacting, the iron particles pass through a homogenizing and precompressing stage. Thus, the compacted iron has a pore volume of max. 40% and a density of at least 5.5 g/cm.sup.3. The iron compacted to a band is subsequently guided between the rollers (7,8,11) of a separating stage exposing it to bending stresses such that it breaks apart at the predetermined desired breaking points. The breaking points have a smaller density than the band regions between them. They can be produced in that in the precompression stage the feed speed is briefly decelerated compared with the feed speed in the compaction stage or in the compaction stage there is less marked compression at these points than in the intermediate regions.
Abstract:
Mirror carriers (14,16,18) with resonator mirrors (30,32,34) are adjusted relative to a base (10) by means of a manipulator and are durably affixed to a surface (12) of the base (10) in their adjusted positions by attachment by optical contact. Several designs of mirror carriers and bases are described. A wet attachment method for initiating the process of attachment by optical contact is described, wherein a drop of an auxiliary liquid (acetone) creeps into the gap between the surfaces of the mirror carrier and the base and then evaporates.
Abstract:
A method for manufacturing high-precision end faces on waveguides, by which the end face of a waveguide formed in a substrate contains microscopically small fractures due to mechanical processing, is characterized by the procedural steps: place a body (20) having a high-precision surface against the substrate (10) in front of the end face of the waveguide (12); introducing an adhesive (22) into the space between the end face of the waveguide (12) and the high-precision surface of the body (20); and allowing the adhesive (22) to set.
Abstract:
The apparatus for brightening cockpit instruments contains a passive optical brightening device for directing daylight which shines through front windows of the cockpit, to impinge upon the viewer-oriented cockpit instrument surface.
Abstract:
A process for the passivating, multistage compaction of hot iron particles supplied in the form of a packed bed from a reduction unit and for the subsequent breaking apart of the compacted iron band is described. Prior to the final compacting, the iron particles pass through a homogenizing and precompressing stage. Thus, the compacted iron has a pore volume of max. 40% and a density of at least 5.5 g/cm.sup.3. The iron compacted to a band is subsequently guided between the rollers (7,8,11) of a separating stage exposing it to bending stresses such that it breaks apart at the predetermined desired breaking points. The latter have a smaller density than the band regions between them. They can be produced in that in the precompression stage the feed speed is briefly decelerated compared with the feed speed in the compaction stage or in the compaction stage there is less marked compression at these points than in the intermediate regions.