SUPPORT SINK APPLICATION METHOD FOR 3D PRINTING HEAT DISSIPATION ANALYSIS

    公开(公告)号:US20250045484A1

    公开(公告)日:2025-02-06

    申请号:US18720200

    申请日:2022-12-14

    Abstract: A support sink application method for 3D printing heat dissipation analysis is provided. The support sink application method according to an embodiment of the present invention comprises the steps in which: a support sink application system adds a support sink in order to simulate heat dissipation using a support in a state where a support shape is not generated in a 3D model; the support sink application system performs heat dissipation simulation with the support sink added to the 3D model; and the support sink application system adjusts the support sink on the basis of the result of the simulation. Therefore, the convenience of heat dissipation simulation can be improved by introducing the support sink capable of representing heat dissipation by the support with no support shape. In addition, due to dependency reduction caused by a support change, it is not necessary to reanalyze a target model (shape) even when a support is added/moved/deleted, and thus the convenience of heat dissipation simulation can be improved.

    METHOD AND SYSTEM FOR DETERMINING MODEL OUTPUT DIRECTION ON BASIS OF HEAT DISSIPATION CHARACTERISTIC ANALYSIS FOR STABILIZING OUTPUT OF METAL 3D PRINTING

    公开(公告)号:US20240256729A1

    公开(公告)日:2024-08-01

    申请号:US18565797

    申请日:2022-05-25

    CPC classification number: G06F30/17

    Abstract: Provided are a method and a system for determining a model output direction on the basis of heat dissipation characteristic analysis for stabilizing output of metal 3D printing. A method for determining a model output direction on the basis of heat dissipation characteristic analysis according to an embodiment of the present invention comprises: a shape characteristic parameter deriving step in which a model output direction determining system calculates model shape characteristic data according to the output direction of a model that changes in a metal 3D printing output process; a heat data change amount collecting step in which the model output direction determining system collects simulation results regarding residual heat data of the model every time the output direction changes; a heat data change amount analyzing step in which the model output direction determining system analyzes heat dissipation characteristics inside the model on the basis of the collected simulation results, thereby calculating heat flatness after heat dissipation with regard to each output direction; and an output direction determining step in which the model output direction determining system recommends output directions in descending order of heat flatness remaining in the model on the basis of the result of calculating heat flatness after heat dissipation with regard to each output direction in the heat data change amount analyzing step. Accordingly, the amount of remaining heat that changes depending on the output direction is measured through simulation, thereby analyzing heat dissipation characteristics of the model, and output directions appropriate for output stabilization are derived and are proposed to process workers, thereby contributing to output stabilization of metal 3D printing.

Patent Agency Ranking