Abstract:
The present invention relates to an electrolyte solution containing an iodide additive, and a sulfur dioxide-based secondary battery including the same. An electrolyte solution for a sulfur dioxide-based secondary battery according to the present invention includes sulfur dioxide (SO2), an alkali metal salt, and an iodide additive. An iodide additive is added to an electrolyte solution, and thus energy efficiency, a long-life characteristic, and stability of a negative electrode of a sulfur dioxide-based secondary battery can be improved.
Abstract:
The present invention relates to a positive electrode containing a metal chloride and an alkali metal chloride and an alkali metal-ion secondary battery including the same. The alkali metal-ion secondary battery according to the present invention includes a negative electrode, a positive electrode containing a metal chloride and an alkali metal chloride, and a sulfur dioxide-based inorganic electrolyte solution containing an inorganic electrolyte including sulfur dioxide (SO2) and an alkali metal salt. As the alkali metal-ion secondary battery according to the present invention uses a mixture of the metal chloride and the alkali metal chloride as a positive electrode material, and an alkali-ion electrolyte as a sulfur dioxide-based inorganic electrolyte, compared to the conventional sodium-ion secondary battery, the alkali metal-ion secondary battery can be used at room temperature and pre-charged, and have improved energy density and power density.
Abstract:
The present invention relates to a negative electrode for a lithium secondary battery that can ensure a high energy density, a long-life characteristic, and stability by forming a film on a negative electrode for a lithium secondary battery and thus suppressing dendrites during electrodeposition, a method of manufacturing the same, and a lithium secondary battery using the same. The method of manufacturing the negative electrode for a lithium secondary battery according to the present invention includes preparing a sulfur dioxide-based sodium molten salt and forming a protective layer on the surface of a current collector by immersing the current collector in the sulfur dioxide-based sodium molten salt.