Abstract:
Provided is an electrode material for an energy storage device, which comprises a metal organic framework, wherein an element having an unshared electron pair is doped to the organic linker of the metal organic framework. The electrode material for an energy storage device comprises a metal organic framework in which an element having an unshared electron pair is doped to the organic linker. The non-shared electron pair of the element doped to the electrode material is bound to high-order polysulfide to prevent the polysulfide from being transferred to lithium metal, thereby providing a good effect upon cycle characteristics and thus improving the cycle characteristics of an energy storage device, such as a lithium-sulfur battery. As a result, the metal organic framework having nitrogen doped thereto improves the cycle characteristics of an energy storage device, such as a lithium-sulfur battery, as a cathode thereof.
Abstract:
Disclosed is a method for improving solar energy conversion efficiency of a metal oxide semiconductor photocatalyst, which includes rapidly performing hydrogenation and nitrogenation of a metal oxide semiconductor material through an H2/N2 mixed gas plasma treatment in a single process at room temperature, so as to enhance photocatalytic energy conversion efficiency. Specifically, disclosed is a treatment technique in which a plasma ball formed by controlling a mixing ratio of hydrogen gas to nitrogen gas in a range of 1:1 to 1:3 contacts with a surface of a metal oxide material, such that a great amount of oxygen vacancy and nitrogen elements are introduced in the surface of the metal oxide material to improve electron-hole pairs transfer ability thereof and decrease a size of the band-gap. A catalyst including the metal oxide material directly converts the solar energy into a compound by photocatalytic hydrogen generation and CO2 conversion.
Abstract:
Disclosed is a technique for fabricating a bio-photovoltaic cell which includes coupling graminoids extracted from natural grasses to a semiconductor electron acceptor, on which plasmonic silver nanoparticles are aligned, by using an organic ligand material. More particularly, disclosed is a technique for fabricating a new renewable energy generation device useable for fabrication of high efficiency bio-photovoltaic cells by improving a photo-electron generation rate of graminoids through a surface plasmon effect of silver nanoparticles and increasing an effective photo-electron amount transferred to the electron acceptor due to optimized bonding between a photo sensitizer and an electron acceptor
Abstract:
The present disclosure relates to a pseudocapacitive conductive composite including conductive polymer chains formed on a graphene sheet, a composite for an electrode including sub-nanoscale particles of a metal oxide or metal sulfide formed on a graphene sheet, and an aqueous hybrid capacitor including the composites as electrode active materials.
Abstract:
The present disclosure relates to a triphasic metal oxide composite including a nanosheet and a core-shell structure, a photocatalyst including the same, and a method of preparing the same.
Abstract:
The present disclosure relates to a pliable carbonaceous pocket composite structure including various particles encapsulated within pliable carbonaceous pockets formed by carbonaceous sheets, a method for preparing the pliable carbonaceous pocket composite structure which enables ultrafast mass production of the pliable carbonaceous pocket composite structure, an electrode including the pliable carbonaceous pocket composite structure, and an energy storage device including the electrode.
Abstract:
Disclosed is a negative electrode material for a lithium secondary battery, using a layer structure of porous graphene and metal oxide nanoparticles, with remarkably fast charge/discharge characteristics and long cycle life characteristics, wherein macropores of the porous graphene and a short diffusion distance of the metal oxide nanoparticles enable rapid migration and diffusion of lithium ions. The present invention may achieve remarkably fast charge/discharge behaviors and exceedingly excellent cycle life characteristics of 10,000 cycles or more even under a current density of 30,000 mA·g−1. Accordingly, the structure of the present invention may implement very rapid charge/discharge characteristics and stable cycle life characteristics while having high capacity by combining the structure with negative electrode nanostructures of the porous graphene network structure, and thereby being widely used in a variety of applications.
Abstract:
The present invention discloses a method for improving solar energy conversion efficiency using metal oxide photocatalysts having an energy band of core-shell structure for ultraviolet (UV) ray and visible light absorption, comprising a first process of forming a nanoparticle thin film layer; a second process of preparing a core-shell metal oxide on metal oxide nanoparticles by a plasma reaction under a hydrogen and nitrogen gas atmosphere, and a third process of depositing a transition metal on surfaces of core-shell metal oxide nanoparticles to produce a photocatalyst for energy conversion. A great amount of oxygen vacancies is formed in a shell region by the core-shell metal oxide to achieve effects of improving transfer ability of electron-hole pairs excited by light, and extending a wavelength range of absorbable light to a visible light region by changing a band-gap structure.