Abstract:
The present invention generally relates to, amongst other things, systems, devices, materials, and methods that can improve the accuracy and/or precision of nitric oxide therapy by, for example, reducing the dilution of inhaled nitric oxide (NO). As described herein, NO dilution can occur because of various factors. To reduce the dilution of an intended NO dose, various exemplary nasal cannulas, pneumatic configurations, methods of manufacturing, and methods of use, etc. are disclosed.
Abstract:
Described are systems and methods for providing a pulse of a therapeutic gas with a desired flow profile to maximize therapeutic effectiveness. Systems and methods of the present disclosure can generate and/or provide desired flow profiles with various shapes and/or properties by configuring, modifying, optimizing, and/or factoring in aspects of at least one fixed flow rate assembly of a therapeutic gas delivery system such as, but not limited to, spatial relationships of elements of the fixed flow rate assembly, rate of valve closure and opening, latent flows, transient wave generation and/or propagation, to name a few.
Abstract:
Described are methods for safer nitric oxide delivery, as well as apparatuses for performing these methods. The methods may include detecting the presence or absence of a nasal cannula, and stopping the delivery of nitric oxide or providing an alert if the cannula is disconnected. The methods may also include purging the nasal cannula if it is reconnected after a disconnection or if it is replaced by a new cannula. Other methods pertain to automatic purging of the delivery conduit if the elapsed time between successive deliveries of therapeutic gas exceeds a predetermined period of time.
Abstract:
The present invention generally relates to, amongst other things, systems, devices, materials, and methods that can improve the accuracy and/or precision of nitric oxide therapy by, for example, reducing the dilution of inhaled nitric oxide (NO). As described herein, NO dilution can occur because of various factors. To reduce the dilution of an intended NO dose, various exemplary nasal cannulas, pneumatic configurations, methods of manufacturing, and methods of use, etc. are disclosed.
Abstract:
Described are methods for safer nitric oxide delivery, as well as apparatuses for performing these methods. The methods may include detecting the presence or absence of a nasal cannula, and stopping the delivery of nitric oxide or providing an alert if the cannula is disconnected. The methods may also include purging the nasal cannula if it is reconnected after a disconnection or if it is replaced by a new cannula. Other methods pertain to automatic purging of the delivery conduit if the elapsed time between successive deliveries of therapeutic gas exceeds a predetermined period of time.
Abstract:
The present invention generally relates to, amongst other things, systems, devices, materials, and methods that can improve the accuracy and/or precision of nitric oxide therapy by, for example, reducing the dilution of inhaled nitric oxide (NO). As described herein, NO dilution can occur because of various factors. To reduce the dilution of an intended NO dose, various exemplary nasal cannulas, pneumatic configurations, methods of manufacturing, and methods of use, etc. are disclosed.
Abstract:
Described are methods and devices for therapeutic or medical gas delivery that utilize at least one proportional control valve and at least one binary control valve. The proportional control valve may be in series with the binary control valve to provide a valve combination capable of pulsing therapeutic gas at different flow rates, depending on the setting of the proportional control valve. Alternatively, the proportional control valve and binary control valve may be in parallel flow paths.
Abstract:
The present invention generally relates to, amongst other things, systems, devices, materials, and methods that can improve the accuracy and/or precision of nitric oxide therapy by, for example, reducing the dilution of inhaled nitric oxide (NO). As described herein, NO dilution can occur because of various factors. To reduce the dilution of an intended NO dose, various exemplary nasal cannulas, pneumatic configurations, methods of manufacturing, and methods of use, etc. are disclosed.
Abstract:
The present invention generally relates to, amongst other things, systems, devices, materials, and methods that can improve the accuracy and/or precision of nitric oxide therapy by, for example, reducing the dilution of inhaled nitric oxide (NO). As described herein, NO dilution can occur because of various factors. To reduce the dilution of an intended NO dose, various exemplary nasal cannulas, pneumatic configurations, methods of manufacturing, and methods of use, etc. are disclosed.
Abstract:
Described are methods and devices for therapeutic or medical gas delivery that utilize at least one proportional control valve and at least one binary control valve. The proportional control valve may be in series with the binary control valve to provide a valve combination capable of pulsing therapeutic gas at different flow rates, depending on the setting of the proportional control valve. Alternatively, the proportional control valve and binary control valve may be in parallel flow paths.