Abstract:
An apparatus and method for controlling opening and closing of a vehicle door are provided. The apparatus includes a driving unit that opens and closes a door a controller that operates the driving unit. Additionally, an acoustic wave processing unit receives and analyzes an acoustic wave signal generated by force exerted onto the door to generate a control signal for opening or closing of the door. The controller receives the control signal to thus operate the driving unit. Further, the acoustic wave processing unit includes an acoustic wave sensor disposed inside of the door and receives the acoustic wave signal, and an MCU that analyzes a signal output from the acoustic wave sensor to generate the control signal.
Abstract:
A system and a method for controlling a lamp in a vehicle capable of recognizing turn on/off of the lamp in the vehicle when a driver or a passenger enters or exits the vehicle and improving sensitivity quality of the driver or the passenger by entering a breathing mode in which a lamp in the vehicle is repeatedly brightened and darkened at a specific period when the driver or the passenger enters or exits the vehicle and changing a period of a luminance of the lamp in proportion to a speed of the vehicle are provided. The system for controlling a lamp in a vehicle includes: a lamp controlling unit configured to receive a door opening signal or a door closing signal of the vehicle or receive a start on or off signal of the vehicle and to change a mode of the lamp into a standby mode, a breathing mode, or an operating mode; and a lamp configured to be driven by the lamp controlling unit.
Abstract:
An apparatus including a processor configured to: detect a position of a vehicle and a plurality of positions of fixed objects located around the vehicle based on map coordinates; detect objects based on information measured using a distance measurement sensor disposed in the vehicle; detect a moving object among the detected objects; estimate a plurality of positions of the vehicle and the moving object after a fixed period of time based on a position, a speed, and a movement direction of the moving object; and calculate a degree of proximity risk for the moving object with respect to the vehicle based on a distance and a speed between the vehicle and the moving object.
Abstract:
The present invention provides a method and a system for producing a classifier for recognizing an obstacle, including a processor configured to: display surface data of a plurality of obstacles measured by a distance measurement sensor in a two-dimensional (2D) coordinate system; group and classify the surface data displayed in the 2D coordinate system for each obstacle; setting a plurality of feature references to analyze region based features displayed for each obstacle in the 2D coordinate system and calculate the respective feature references for each obstacle grouping; and producing the classifier by applying a weight to each of the feature references.
Abstract:
An apparatus including a processor configured to: detect a position of a vehicle and a plurality of positions of fixed objects located around the vehicle based on map coordinates; detect objects based on information measured using a distance measurement sensor disposed in the vehicle; detect a moving object among the detected objects; estimate a plurality of positions of the vehicle and the moving object after a fixed period of time based on a position, a speed, and a movement direction of the moving object; and calculate a degree of proximity risk for the moving object with respect to the vehicle based on a distance and a speed between the vehicle and the moving object.
Abstract:
An integrated remote control system includes a user operation device for receiving a control object list and a control item list from a function device physically coupled thereto, and for outputting the received control object list and the received control item list for a user to select therefrom one or more of a control object and a control item, and a gateway connected to the user operation device through a wireless communication network, the gateway generating and outputting a control signal corresponding to one or more of the control object and the control item selected by the user.
Abstract:
An apparatus and method that provide a customized input-service is provided. The apparatus includes at least one input unit that generates an sound wave based on an exterior input and a sound wave sensor that converts an sound signal for the sound wave into an electric signal. In addition, a controller analyzes the electric signal received from the sound wave sensor to confirm where the exterior input is generated and detects a control signal based on the exterior input and performs an operation based on the control signal from operations allocated to the input unit.
Abstract:
A device that causes a driver not to feel passive task-related fatigue by performing interaction with the driver at a time when the driver feeling passive task-related fatigue, thereby promoting safe driving. In particular, phrase “the interaction with the driver” refers to a series of operations viewing quiz data or beat sequence data to the driver, receiving a response, and visually, acoustically, and tactilely informing a result according to the response, and a control of each component for the operation.
Abstract:
An apparatus that senses a minor collision of a vehicle is configured to minimize damage to the vehicle by actuating a brake system of the vehicle upon sensing a scratch of the vehicle by analyzing a sound (e.g., a sound wave signal) generated when a surface of the vehicle is scratched by, for example, a column of a building, the other vehicle, or the like when the vehicle is driven forward or backward at or below a certain speed.
Abstract:
The present invention provides a method and a system for producing a classifier for recognizing an obstacle, including a processor configured to: display surface data of a plurality of obstacles measured by a distance measurement sensor in a two-dimensional (2D) coordinate system; group and classify the surface data displayed in the 2D coordinate system for each obstacle; setting a plurality of feature references to analyze region based features displayed for each obstacle in the 2D coordinate system and calculate the respective feature references for each obstacle grouping; and producing the classifier by applying a weight to each of the feature references.