Abstract:
The present invention relates to the field of network communications, and discloses a duplex mode adaptive method, including: querying the modulation mode configuration table, to obtain a maximum modulation mode of the current duplex mode and a maximum modulation mode of the non-current duplex mode; calculating maximum spectral efficiency of the current duplex mode according to the maximum modulation mode of the current duplex mode; calculating maximum spectral efficiency of the non-current duplex mode according to the maximum modulation mode of the non-current duplex mode; comparing the maximum spectral efficiency of the current duplex mode with the maximum spectral efficiency of the non-current duplex mode, and selecting a duplex mode whose spectral efficiency is greater as a next-step duplex mode; and switching a duplex mode of the wireless communications apparatus to the next-step duplex mode.
Abstract:
Embodiments of the present invention provide a data sending and receiving method, an apparatus, and a system. The method can be executed by a microwave device, which includes: obtaining a control word (CW) and a first antenna-carrier (A×C) from a common public radio interface (CPRI) frame; modulating the CW to obtain in-phase/quadrature (I/Q) data of the CW; determining a first timeslot in which the first A×C does not carry antenna-carrier I/Q data; writing a preset synchronization sequence, first information, and a random number in the first timeslot to generate a second A×C; and combining the second A×C with the I/Q data of the CW to generate a microwave air interface frame, and sending the microwave air interface frame in a time division multiplexing manner.
Abstract:
The present disclosure discloses a digital fronthaul data transmission method, device, and system, which relate to the communications field and improve system performance of a distributed base station. A specific solution is: a first microwave device receives digital fronthaul data; obtains common information and radio signal information from the digital fronthaul data; performs digital QAM on the common information to obtain I/Q data of the common information; generates a microwave air interface frame in a time division multiplexing manner based on the radio signal information and the I/Q data of the common information, where the radio signal information and the I/Q data of the common information are encapsulated in a payload area of the microwave air interface frame, and a pilot in a microwave overhead and the payload area are arranged at a preset interval in an interleaved manner; and sends the microwave air interface frame.
Abstract:
The present invention discloses an information processing method and apparatus, including: obtaining a local to-be-transmitted signal by using a local transmitter, and inserting first pilots and second pilots, where the first pilots are inserted from a first position of the local to-be-transmitted signal, the second pilots are inserted from a second position of the local to-be-transmitted signal; obtaining a local transmit signal; obtaining a peer transmit signal, where the peer transmit signal is sent after third pilots and fourth pilots are inserted, the third pilots are inserted from a third position of the peer transmit signal, the fourth pilots are inserted from a fourth position of the peer transmit signal, the first pilot is orthogonal to the fourth pilot, and the second pilot is orthogonal to the third pilot; and parsing the local transmit signal and the peer transmit signal by using the local receiver.
Abstract:
The present invention provides a method. The method includes: performing coupling to acquire a first reference signal and a second reference signal from a transmit signal transmitted on a same transmit link at a transmit end; performing signal recombination according to the first reference signal and the second reference signal, to obtain a first interference cancellation signal and a second interference cancellation signal; enabling the first interference cancellation signal to pass through a simulated interference channel, and enabling the second interference cancellation signal to pass through the simulated interference channel; and coupling and output, to a same receive link at the local receive end, the first interference cancellation signal and the second interference cancellation signal that have passed through the simulated interference channel, and combining the first interference cancellation signal and the second interference cancellation signal with a signal received by the local receive end.
Abstract:
Embodiments of the present invention provide a data sending and receiving method, an apparatus, and a system. The method can be executed by a microwave device, which includes: obtaining a control word (CW) and a first antenna-carrier (A×C) from a common public radio interface (CPRI) frame; modulating the CW to obtain in-phase/quadrature (I/Q) data of the CW; determining a first timeslot in which the first A×C does not carry antenna-carrier I/Q data; writing a preset synchronization sequence, first information, and a random number in the first timeslot to generate a second A×C; and combining the second A×C with the I/Q data of the CW to generate a microwave air interface frame, and sending the microwave air interface frame in a time division multiplexing manner.
Abstract:
Embodiments of the present invention provide a method and an apparatus for allocating optical spectrum bandwidth resources. The method includes: first determine bandwidth of an OTUbase according to optical-layer frequency grid bandwidth and carrier spectrum efficiency; then construct an HO OTUflex according to bandwidth of customer service data and the bandwidth of the OTUbase, bandwidth of the HO OTUflex is a first integer multiple of the bandwidth of the OTUbase; map the customer service data into a payload area of the HO OTUflex and encapsulate overhead information; at last, modulate the HO OTUflex that carries the customer service data to a second integer number of optical channel carriers. The embodiments of the present invention apply to a scenario where customer service data is transported.
Abstract:
The present invention discloses an information processing method and apparatus, including: obtaining a local to-be-transmitted signal by using a local transmitter, and inserting first pilots and second pilots, where the first pilots are inserted from a first position of the local to-be-transmitted signal, the second pilots are inserted from a second position of the local to-be-transmitted signal; obtaining a local transmit signal; obtaining a peer transmit signal, where the peer transmit signal is sent after third pilots and fourth pilots are inserted, the third pilots are inserted from a third position of the peer transmit signal, the fourth pilots are inserted from a fourth position of the peer transmit signal, the first pilot is orthogonal to the fourth pilot, and the second pilot is orthogonal to the third pilot; and parsing the local transmit signal and the peer transmit signal by using the local receiver.
Abstract:
A method includes: A first device sends a first signal to a second device, where the first signal includes a first transmit signal and a first pilot signal; the first device obtains a second signal, where the second signal includes a first self-interference signal, a second pilot signal, and a second receive signal from the second device; the first device extracts jitter information of the first self-interference signal based on the first pilot signal and the second pilot signal; the first device reconstructs a self-interference signal based on the first transmit signal and the jitter information of the first self-interference signal, to obtain a cancellation signal of the first self-interference signal; and the first device cancels the first self-interference signal from the second receive signal based on the cancellation signal of the first self-interference signal.
Abstract:
The present invention relates to the field of network communications, and discloses a duplex mode adaptive method, including: querying the modulation mode configuration table, to obtain a maximum modulation mode of the current duplex mode and a maximum modulation mode of the non-current duplex mode; calculating maximum spectral efficiency of the current duplex mode according to the maximum modulation mode of the current duplex mode; calculating maximum spectral efficiency of the non-current duplex mode according to the maximum modulation mode of the non-current duplex mode; comparing the maximum spectral efficiency of the current duplex mode with the maximum spectral efficiency of the non-current duplex mode, and selecting a duplex mode whose spectral efficiency is greater as a next-step duplex mode; and switching a duplex mode of the wireless communications apparatus to the next-step duplex mode.