Abstract:
A tablet terminal 1A is a measurement apparatus for measuring a subject's eyelid position, and includes a display section 3 that generates a vertically long light emitting region to make a reflection image form on a corneal surface of the subject's eyeball, a camera 5 that images the reflection image formed by the display section 3, and an arithmetic circuit 7 that derives reflection image information concerning a size or position of the reflection image based on image data of the reflection image obtained by the camera 5, and measures the eyelid position based on the reflection image information.
Abstract:
An eyeblink measurement method includes a step of detecting reflected light from a part including a target person's eyelid and eye and outputting an image signal of the reflected light, using a photodetector, a step of calculating a position of a corneal reflected light produced on the eye in the part and a position of the eyelid in the part based on the image signal, a step of correcting the position of the eyelid based on the position of the corneal reflected light, and a step of calculating a feature amount regarding blinking based on a temporal change in the corrected position of the eyelid.
Abstract:
An object is to simply and easily evaluate differences in behavior of the eyes of subjects. A binocular measurement system 1 includes a photodetector 7 that detects reflected light from the right eye ER and the left eye EL of a subject, and outputs image signal of the reflected light, a feature amount calculating unit 11 that calculates a feature amount corresponding to the right eye ER and a feature amount corresponding to the left eye EL based on the image signal, and a comparison value calculating unit 13 that calculates, based on the two feature amounts, a comparison value obtained by comparing the two feature amounts.
Abstract:
An object is to simply and easily evaluate differences in behavior of the eyes of subjects. A binocular measurement system 1 includes a photodetector 7 that detects reflected light from the right eye ER and the left eye EL of a subject, and outputs image signal of the reflected light, a feature amount calculating unit 11 that calculates a feature amount corresponding to the right eye ER and a feature amount corresponding to the left eye EL based on the image signal, and a comparison value calculating unit 13 that calculates, based on the two feature amounts, a comparison value obtained by comparing the two feature amounts.
Abstract:
An eyeblink measurement system 10 is a measurement apparatus for measuring a subject's eyelid position, and includes a lighting device 1 that irradiates light extending across upper to lower eyelids of the subject's eye region E, and an image measurement device 2 that has an optical axis Ia on a plane for which a plane including an irradiation optical axis La of the light is rotated by a predetermined angle θ around an axis A1 along the light to be irradiated onto the subject, obtains height information based on the position of an optical image of the light in an image imaged, and measures the eyelid position based on the height information.