-
公开(公告)号:US11287320B2
公开(公告)日:2022-03-29
申请号:US16615151
申请日:2018-05-14
Applicant: HAMAMATSU PHOTONICS K.K.
Inventor: Yoshihisa Warashina , Kei Tabata
Abstract: Provided is a filter controlling expression derivation method including: preparing a Fabry-Perot interference filter of which distance between a fixed mirror and a movable mirror is controlled by balancing an electrostatic force and an elastic force; deriving a relational expression between a deflection amount and an elasticity index in which the elasticity index of the movable mirror is described as a quadratic or higher-order polynomial with the deflection amount of the movable mirror as a variable by performing predetermined measurement; and deriving a relational expression between a transmission wavelength of light transmitted through the Fabry-Perot interference filter and the voltage as a filter controlling expression based on the relational expression between the deflection amount and the elasticity index and a relational expression between the electrostatic force and the elastic force.
-
公开(公告)号:US20250052612A1
公开(公告)日:2025-02-13
申请号:US18931815
申请日:2024-10-30
Applicant: HAMAMATSU PHOTONICS K.K.
Inventor: Takashi Kasahara , Katsumi Shibayama , Kei Tabata , Masaki Hirose , Hiroki Oyama , Yumi Kuramoto
Abstract: A light detection device of the present invention includes: a wiring board; a first support part disposed on a mounting surface of the wiring board; a Fabry-Perot interference filter having a first mirror part and a second mirror part between which a distance is variable and having an outer edge portion disposed in a first support region of the first support part; a light detector disposed on the mounting surface to face the first mirror part and the second mirror part on one side of the first support part; and a temperature detector disposed on the mounting surface, wherein the temperature detector is disposed on the mounting surface such that at least a part of the temperature detector overlaps a part of the Fabry-Perot interference filter when seen in a first direction perpendicular to the mounting surface and such that at least a part of the temperature detector overlaps a part of the first support part when seen in a second direction in which the first support part and the light detector are aligned with each other, and wherein a first distance between the temperature detector and the first support part in the second direction is smaller than a first width of the first support region in the second direction.
-
公开(公告)号:US12169143B2
公开(公告)日:2024-12-17
申请号:US18223209
申请日:2023-07-18
Applicant: HAMAMATSU PHOTONICS K.K.
Inventor: Takashi Kasahara , Katsumi Shibayama , Kei Tabata , Masaki Hirose , Hiroki Oyama , Yumi Kuramoto
Abstract: A light detection device of the present invention includes: a wiring board; a first support part disposed on a mounting surface of the wiring board; a Fabry-Perot interference filter having a first mirror part and a second mirror part between which a distance is variable and having an outer edge portion disposed in a first support region of the first support part; a light detector disposed on the mounting surface to face the first mirror part and the second mirror part on one side of the first support part; and a temperature detector disposed on the mounting surface, wherein the temperature detector is disposed on the mounting surface such that at least a part of the temperature detector overlaps a part of the Fabry-Perot interference filter when seen in a first direction perpendicular to the mounting surface and such that at least a part of the temperature detector overlaps a part of the first support part when seen in a second direction in which the first support part and the light detector are aligned with each other, and wherein a first distance between the temperature detector and the first support part in the second direction is smaller than a first width of the first support region in the second direction.
-
公开(公告)号:US10168140B2
公开(公告)日:2019-01-01
申请号:US15516699
申请日:2015-10-08
Applicant: HAMAMATSU PHOTONICS K.K.
Inventor: Kenji Makino , Masato Inagaki , Kei Tabata
Abstract: A light detecting module that detects interference light that has exited an exit end surface of an optical fiber in an OCT instrument includes: a ball lens including an incident surface entered by the interference light that has exited the exit end surface, and an exit surface exited by the interference light that has entered the incident surface; and a photodiode including a detecting surface entered by the interference light that has exited the exit surface. The interference light obliquely enters the incident surface with respect to a perpendicular line at an incident position of the interference light. The interference light obliquely exits the exit surface with respect to a perpendicular line at an exit position of the interference light. The interference light obliquely enters the detecting surface with respect to a perpendicular line at an incident position of the interference light.
-
公开(公告)号:US20240230405A1
公开(公告)日:2024-07-11
申请号:US18618187
申请日:2024-03-27
Applicant: HAMAMATSU PHOTONICS K.K.
Inventor: Kei Tabata , Masaaki Muto
CPC classification number: G01J3/28 , G01J3/0291 , G01J3/26 , G02B5/284 , G01J2003/1252
Abstract: A spectroscopic unit includes a housing, a light incident portion provided in the housing, a Fabry-Perot interference filter arranged in the housing and having a first mirror and a second mirror, a distance between the first mirror and the second mirror being variable. The light incident portion includes an aperture portion in which an aperture is formed and a band pass filter arranged between the aperture and the Fabry-Perot interference filter. The aperture portion is configured so that a value obtained by dividing a length of the aperture in a facing direction of the first mirror and the second mirror by a width of the aperture in a direction perpendicular to the facing direction is equal to or more than 0.5 and the entirety of light passing through the aperture is incident on the band pass filter.
-
公开(公告)号:US11971301B2
公开(公告)日:2024-04-30
申请号:US17287157
申请日:2019-08-06
Applicant: HAMAMATSU PHOTONICS K.K.
Inventor: Kei Tabata , Masaaki Muto
CPC classification number: G01J3/28 , G01J3/0291 , G01J3/26 , G02B5/284 , G01J2003/1252
Abstract: A spectroscopic unit includes a housing, a light incident portion provided in the housing, a Fabry-Perot interference filter arranged in the housing and having a first mirror and a second mirror, a distance between the first mirror and the second mirror being variable. The light incident portion includes an aperture portion in which an aperture is formed and a band pass filter arranged between the aperture and the Fabry-Perot interference filter. The aperture portion is configured so that a value obtained by dividing a length of the aperture in a facing direction of the first mirror and the second mirror by a width of the aperture in a direction perpendicular to the facing direction is equal to or more than 0.5 and the entirety of light passing through the aperture is incident on the band pass filter.
-
公开(公告)号:US11796391B2
公开(公告)日:2023-10-24
申请号:US17634280
申请日:2020-10-06
Applicant: HAMAMATSU PHOTONICS K.K.
Inventor: Takashi Kasahara , Katsumi Shibayama , Kei Tabata , Masaki Hirose , Hiroki Oyama , Yumi Kuramoto
CPC classification number: G01J3/26 , G01J3/0297 , G01J3/45 , G02B5/281 , G02B26/001
Abstract: A light detection device includes: a first support part disposed on a mounting surface of the wiring board; a Fabry-Perot interference filter disposed in a first support region of the first support part; and a temperature detector, wherein the temperature detector is disposed on the mounting surface such that at least a part of the temperature detector overlaps a part of the Fabry-Perot interference filter when seen in a first direction perpendicular to the mounting surface and such that at least a part of the temperature detector overlaps a part of the first support part when seen in a second direction in which the first support part and the light detector are aligned with each other, and wherein a first distance between the temperature detector and the first support part in the second direction is smaller than a first width of the first support region in the second direction.
-
-
-
-
-
-