Abstract:
A rework press assembly for reworking a dimensionally non-conformant component is provided. The rework press assembly includes a frame, a die coupled to the frame and configured to contact a first portion of the component, and a ram. The ram is coupled to the frame opposite the die with respect to an axis of the rework press assembly and is configured to contact a second portion of the component. The ram and the die define a component cavity therebetween. At least one of the die and the ram has a first length, relative to the axis, in response to the rework press assembly being at a first thermal condition. The at least one of the die and the ram has a second length, relative to the axis, in response to the rework press assembly being at a second thermal condition, and the second length is greater than the first length.
Abstract:
A corrosion monitoring system includes at least one corrosion sensor. The corrosion sensor includes a metallic plug having at least one opening, at least one ceramic sheath in the opening of the metallic plug, and a plurality of probes. Each probe has a central portion with a predetermined cross sectional area extending from the metallic plug. The ceramic sheath electrically isolates each first end and each second end of the probes from the metallic plug and the other first ends and second ends. The probes are sized to provide a distribution of predetermined cross sectional areas of the central portions. The corrosion monitoring system also includes a resistance meter measuring an ohmic resistance for at least one of the probes and a computer determining a corrosion rate by correlating a rate of change of the ohmic resistance to the corrosion rate of the probe.
Abstract:
A composite turbine blade and a method of manufacture thereof is disclosed. The composite turbine blade comprises a turbine blade portion comprising a first material and a first tip plate comprising a second material. The turbine blade portion has an exterior wall and an interior wall surrounding a hollow interior cavity, and a top surface extending from the exterior wall to the interior wall bounding an orifice that is fluidly connected to the hollow interior cavity. The first tip plate may be attached to the turbine blade along the top surface and extending from proximate the exterior wall of the turbine blade across the orifice to cover the orifice.
Abstract:
Coating methods and a coated substrate are provided. The coating method includes providing a component having an aperture formed in a surface thereof, arranging and disposing a hollow member on a portion of the surface to define a hollow space above the aperture corresponding to a shape of the aperture at the surface, applying at least one coating over the surface of the component and the hollow member to form an applied coating having an applied coating thickness, and removing at least a portion of the hollow member to expose the hollow space through the applied coating. The coated substrate includes a component having an aperture formed in a surface thereof, a hollow member arranged and disposed on the surface to define a hollow space above the aperture, and an applied coating over the surface of the component, the hollow space being exposed through the applied coating.
Abstract:
A system for locating at least one surface feature, such as a cooling aperture, on a turbine component is provided. The system includes at least one feature marker configured for placement adjacent to the at least one surface feature. The system also includes at least one sensor configured for non-visual detection of the at least one feature marker. The system also includes a control device coupled to the at least one sensor for receiving signals from the at least one sensor, wherein the signals represent data indicative of one of a presence of the at least one feature marker and an absence of the at least one feature marker.
Abstract:
A method of forming a microchannel cooled component is provided. The method includes forming at least one microchannel within a surface of a relatively planar plate. The method also includes placing a relatively planar cover member over the surface having the at least one microchannel formed therein. The method further includes adhering the relatively planar cover member to the relatively planar plate. The method yet further includes curving the microchannel cooled component by pressing the relatively planar cover member with a forming component for at least a portion of a time period of adhering the relatively planar cover member to the relatively planar plate.
Abstract:
A system for locating at least one surface feature, such as a cooling aperture, on a turbine component is provided. The system includes at least one feature marker configured for placement adjacent to the at least one surface feature. The system also includes at least one sensor configured for non-visual detection of the at least one feature marker. The system also includes a control device coupled to the at least one sensor for receiving signals from the at least one sensor, wherein the signals represent data indicative of one of a presence of the at least one feature marker and an absence of the at least one feature marker.
Abstract:
A process of forming a calcium-magnesium-aluminosilicate (CMAS) penetration resistant coating, and a CMAS penetration resistant coating are disclosed. The process includes providing a thermal barrier coating having a dopant, and exposing the thermal barrier coating to calcium-magnesium-aluminosilicate and gas turbine operating conditions. The exposing forming a calcium-magnesium-aluminosilicate penetration resistant layer. The coating includes a thermal barrier coating composition comprising a dopant selected from the group consisting of rare earth elements, non-rare earth element solutes, and combinations thereof. Additional or alternatively, the coating includes a thermal barrier coating and an impermeable barrier layer or a washable sacrificial layer positioned on an outer surface of the thermal barrier coating.
Abstract:
A metallic seal assembly, a turbine component, and a method of regulating flow in turbo-machinery are disclosed. The metallic seal assembly includes a sealing structure having thermally-responsive features. The thermally-responsive features deploy from or retract toward a surface of the sealing structure in response to a predetermined temperature change. The turbine component includes the metallic seal assembly. The method of regulating flow in turbo-machinery includes providing the metallic seal assembly and raising or retracting the thermally-responsive features in response to the predetermined temperature change.
Abstract:
A method of forming a microchannel cooled component is provided. The method includes forming at least one microchannel within a surface of a relatively planar plate. The method also includes placing a relatively planar cover member over the surface having the at least one microchannel formed therein. The method further includes adhering the relatively planar cover member to the relatively planar plate. The method yet further includes curving the microchannel cooled component by pressing the relatively planar cover member with a forming component for at least a portion of a time period of adhering the relatively planar cover member to the relatively planar plate.