Biological unit segmentation with ranking based on similarity applying a geometric shape and scale model
    1.
    发明授权
    Biological unit segmentation with ranking based on similarity applying a geometric shape and scale model 有权
    基于相似度的生物单位分割与应用几何形状和尺度模型

    公开(公告)号:US09589360B2

    公开(公告)日:2017-03-07

    申请号:US13666343

    申请日:2012-11-01

    Abstract: Embodiments of the disclosure are directed to segmenting a digital image of biological tissue into biological units, such as cells. A first weak or data driven segmentation is generated using image data representing the digital image to segment the digital image into a first set of biological units. Applying a geometric model, each unit in the first set of biological units is ranked based on a similarity in shape and scale between the unit and one or more other units in the image. A subset of units from the first set of biological units is selected based on the rank of each biological unit relative to a predetermined threshold rank. A second weak or data driven segmentation may then be generated using image data including the subset of biological units to segment that portion of the digital image into a second set of biological units.

    Abstract translation: 本公开的实施例涉及将生物组织的数字图像分割成诸如细胞的生物单元。 使用表示数字图像的图像数据来生成第一弱或数据驱动的分割,以将数字图像分割成第一组生物单元。 应用几何模型,基于图像中的单元和一个或多个其他单元之间的形状和尺度的相似性对第一组生物单元中的每个单元进行排序。 基于每个生物单元相对于预定阈值秩的等级来选择来自第一组生物单元的单元的子集。 然后可以使用包括生物单元的子集的图像数据来生成第二弱或数据驱动的分割,以将数字图像的该部分分割成第二组生物单元。

    System and method for multiplexed biomarker quantitation using single cell segmentation on sequentially stained tissue
    3.
    发明授权
    System and method for multiplexed biomarker quantitation using single cell segmentation on sequentially stained tissue 有权
    使用单次细胞分割在连续染色的组织上进行复合生物标志物定量的系统和方法

    公开(公告)号:US08995740B2

    公开(公告)日:2015-03-31

    申请号:US13865036

    申请日:2013-04-17

    Abstract: Improved systems and methods for the analysis of digital images are provided. More particularly, the present disclosure provides for improved systems and methods for the analysis of digital images of biological tissue samples. Exemplary embodiments provide for: i) segmenting, ii) grouping, and iii) quantifying molecular protein profiles of individual cells in terms of sub cellular compartments (nuclei, membrane, and cytoplasm). The systems and methods of the present disclosure advantageously perform tissue segmentation at the sub-cellular level to facilitate analyzing, grouping and quantifying protein expression profiles of tissue in tissue sections globally and/or locally. Performing local-global tissue analysis and protein quantification advantageously enables correlation of spatial and molecular configuration of cells with molecular information of different types of cancer.

    Abstract translation: 提供了改进的数字图像分析系统和方法。 更具体地,本公开提供了用于分析生物组织样本的数字图像的改进的系统和方法。 示例性实施方案提供:i)分段,ii)分组,和iii)根据亚细胞区室(细胞核,膜和细胞质)量化各细胞的分子蛋白质谱。 本公开的系统和方法有利地在亚细胞水平进行组织分割,以便于全局和/或局部地分析,分组和定量组织部位中组织的蛋白质表达谱。 进行局部全局组织分析和蛋白质定量有利于使细胞的空间和分子构型与不同类型癌症的分子信息的相关性。

    BIOLOGICAL UNIT IDENTIFICATION BASED ON SUPERVISED SHAPE RANKING
    5.
    发明申请
    BIOLOGICAL UNIT IDENTIFICATION BASED ON SUPERVISED SHAPE RANKING 有权
    基于监督形状排序的生物单位鉴定

    公开(公告)号:US20140112557A1

    公开(公告)日:2014-04-24

    申请号:US13657255

    申请日:2012-10-22

    Abstract: A method of segmenting a digital image of biological tissue includes accessing a ranking model calculated from training data representing shapes of conforming and non-conforming biological unit exemplars. The ranking model may include support vectors defining a hyperplane in a vector space. The method further includes accessing image data representing the digital image, identifying a first shape and a set of second constituent shapes in the digital image, wherein the first shape comprises a union of the set of second constituent shapes, determining a rank of a first data point in the image data corresponding to the first shape and a rank of a second data point in the image data corresponding to the set of second constituent shapes into the vector space, and segmenting the digital image using the first shape or the set of second constituent shapes based on which data point has a greater respective rank.

    Abstract translation: 分割生物组织的数字图像的方法包括访问由表示符合和不符合生物单元样本的形状的训练数据计算的排名模型。 排名模型可以包括在向量空间中定义超平面的支持向量。 该方法还包括访问表示数字图像的图像数据,识别数字图像中的第一形状和一组第二组成形状,其中第一形状包括该组第二组成形状的并集,确定第一数据的等级 将与第一形状相对应的图像数据和对应于该组第二构成形状的图像数据中的第二数据点的等级排列成向量空间,并且使用第一形状或一组第二成分分割数字图像 基于哪个数据点具有更大的相应等级的形状。

    Seismic data analysis
    7.
    发明授权
    Seismic data analysis 有权
    地震资料分析

    公开(公告)号:US09297918B2

    公开(公告)日:2016-03-29

    申请号:US13729769

    申请日:2012-12-28

    CPC classification number: G06N99/005 G01V1/301 G01V99/00 G01V2210/64

    Abstract: An approach for seismic data analysis is provided. In accordance with various embodiments, the active learning approaches are employed in conjunction with an analysis algorithm that is used to process the seismic data. Algorithms that may employ such active learning include, but are not limited to, ranking algorithms and classification algorithms.

    Abstract translation: 提供了一种地震数据分析方法。 根据各种实施例,主动学习方法与用于处理地震数据的分析算法结合使用。 可以采用这种主动学习的算法包括但不限于排序算法和分类算法。

    SEISMIC DATA ANALYSIS
    8.
    发明申请
    SEISMIC DATA ANALYSIS 有权
    地震数据分析

    公开(公告)号:US20140188769A1

    公开(公告)日:2014-07-03

    申请号:US13729769

    申请日:2012-12-28

    CPC classification number: G06N99/005 G01V1/301 G01V99/00 G01V2210/64

    Abstract: An approach for seismic data analysis is provided. In accordance with various embodiments, the active learning approaches are employed in conjunction with an analysis algorithm that is used to process the seismic data. Algorithms that may employ such active learning include, but are not limited to, ranking algorithms and classification algorithms.

    Abstract translation: 提供了一种地震数据分析方法。 根据各种实施例,主动学习方法与用于处理地震数据的分析算法结合使用。 可以采用这种主动学习的算法包括但不限于排序算法和分类算法。

    Biological unit identification based on supervised shape ranking
    9.
    发明授权
    Biological unit identification based on supervised shape ranking 有权
    基于监督形状排名的生物单位识别

    公开(公告)号:US08908945B2

    公开(公告)日:2014-12-09

    申请号:US13657255

    申请日:2012-10-22

    Abstract: A method of segmenting a digital image of biological tissue includes accessing a ranking model calculated from training data representing shapes of conforming and non-conforming biological unit exemplars. The ranking model may include support vectors defining a hyperplane in a vector space. The method further includes accessing image data representing the digital image, identifying a first shape and a set of second constituent shapes in the digital image, wherein the first shape comprises a union of the set of second constituent shapes, determining a rank of a first data point in the image data corresponding to the first shape and a rank of a second data point in the image data corresponding to the set of second constituent shapes into the vector space, and segmenting the digital image using the first shape or the set of second constituent shapes based on which data point has a greater respective rank.

    Abstract translation: 分割生物组织的数字图像的方法包括访问由表示符合和不符合生物单元样本的形状的训练数据计算的排名模型。 排名模型可以包括在向量空间中定义超平面的支持向量。 该方法还包括访问表示数字图像的图像数据,识别数字图像中的第一形状和一组第二组成形状,其中第一形状包括该组第二组成形状的并集,确定第一数据的等级 将对应于该第二构成形状的图像数据中的第一形状的图像数据和第二数据点的等级指向矢量空间,并且使用第一形状或第二成分组合分割数字图像 基于哪个数据点具有更大的相应等级的形状。

    System and Method for Multiplexed Biomarker Quantitation Using Single Cell Segmentation on Sequentially Stained Tissue
    10.
    发明申请
    System and Method for Multiplexed Biomarker Quantitation Using Single Cell Segmentation on Sequentially Stained Tissue 有权
    用于使用单细胞分割进行连续染色组织的多重生物标志物定量的系统和方法

    公开(公告)号:US20140314299A1

    公开(公告)日:2014-10-23

    申请号:US13865036

    申请日:2013-04-17

    Abstract: Improved systems and methods for the analysis of digital images are provided. More particularly, the present disclosure provides for improved systems and methods for the analysis of digital images of biological tissue samples. Exemplary embodiments provide for: i) segmenting, ii) grouping, and iii) quantifying molecular protein profiles of individual cells in terms of sub cellular compartments (nuclei, membrane, and cytoplasm). The systems and methods of the present disclosure advantageously perform tissue segmentation at the sub-cellular level to facilitate analyzing, grouping and quantifying protein expression profiles of tissue in tissue sections globally and/or locally. Performing local-global tissue analysis and protein quantification advantageously enables correlation of spatial and molecular configuration of cells with molecular information of different types of cancer.

    Abstract translation: 提供了改进的数字图像分析系统和方法。 更具体地,本公开提供了用于分析生物组织样本的数字图像的改进的系统和方法。 示例性实施方案提供:i)分段,ii)分组,和iii)根据亚细胞区室(细胞核,膜和细胞质)量化各细胞的分子蛋白质谱。 本公开的系统和方法有利地在亚细胞水平进行组织分割,以便于全局和/或局部地分析,分组和定量组织部位中组织的蛋白质表达谱。 进行局部全局组织分析和蛋白质定量有利于使细胞的空间和分子构型与不同类型癌症的分子信息的相关性。

Patent Agency Ranking