Abstract:
A computer-implemented system for identifying a precursor to a failure of a particular type of component in a physical system is provided. The physical system includes sensors coupled to the physical system. The computer-implemented system includes a computing device, a database, a processor, and a memory device. The memory device includes historical data including sensor measurements. When instructions are executed by the processor, the processor receives the historical data from the memory device. The processor generates a predictive model. The predictive model uses, as inputs, sensor measurements in the historical data. The predictive model is able to differentiate between sensor measurements taken before the repair event and those taken after the repair event without a time of the repair event being an input to the predictive model. The processor designates at least one sensor measurements used as inputs to the predictive model as precursors to the failure of the component.
Abstract:
A method, medium, and system to receive actual flight schedule data, including flight details associated with each flight of the actual flight schedule; determine an estimate of at least one of airline operations performance constraints and metrics based on the actual flight schedule data and at least one of business rules and an execution of a simulation-based model; and generate a record of corrected actual flight data based on the estimate of at least one of airline operations performance constraints and metrics and the actual flight data.
Abstract:
A method for determining fleet conditions and operational management thereof, performed by a central system includes receiving fleet data from at least one distributed data repository. The fleet data is substantially representative of information associated with a fleet of physical assets. The method also includes processing the received fleet data for the fleet using at least one process of a plurality of processes. The plurality of processes assess the received fleet data into processed fleet data. The method additionally includes determining a fleet condition status using the processed fleet data and the at least one process of the plurality of processes. The method further includes generating a fleet response. The fleet response is substantially representative of a next operational step for the fleet of physical assets. The method also includes transmitting the fleet response to at least one of a plurality of fleet response recipients.
Abstract:
A method, medium, and system to receive a planned flight schedule and an actual flight schedule; determine root cause disturbances for the actual flight schedule based on the planned flight schedule and the actual flight schedule; evaluate a robustness of the planned flight schedule based on an execution of a simulation-based model to generate a set of quantitative metrics for the planned flight schedule; generate a record of the root cause disturbances and a record of the set of quantitative metrics for the planned flight plan; evaluate a robustness of a test flight schedule based on an execution of the simulation-based model and the determined root cause disturbances applied to the simulation-based model to generate a set of quantitative metrics for the test flight schedule; and generate a record of the set of quantitative metrics for the test flight plan.
Abstract:
A method, medium, and system to receive a planned flight schedule and an actual flight schedule; determine root cause disturbances for the actual flight schedule based on the planned flight schedule and the actual flight schedule; evaluate a robustness of the planned flight schedule based on an execution of a simulation-based model to generate a set of quantitative metrics for the planned flight schedule; generate a record of the root cause disturbances and a record of the set of quantitative metrics for the planned flight plan; evaluate a robustness of a test flight schedule based on an execution of the simulation-based model and the determined root cause disturbances applied to the simulation-based model to generate a set of quantitative metrics for the test flight schedule; and generate a record of the set of quantitative metrics for the test flight plan.
Abstract:
A computer-implemented method for estimating maintenance task durations is provided. The method is implemented by at least one computing system including at least one processor and at least one memory device coupled to the processor. The method includes receiving a query including a first query maintenance task and a plurality of query factors, and identifying an initial baseline task duration based at least in part on the first query maintenance task. The initial baseline task duration includes a plurality of baseline task factors. The method further includes identifying at least one adjustment factor based at least in part on the differences between the plurality of query factors and the plurality of baseline task factors, calculating a maintenance task duration estimate based at least in part on the initial baseline task duration and the adjustment factors, and planning execution of the first query maintenance task based on maintenance task duration estimate.
Abstract:
A method, medium, and system to receive a baseline airline schedule including details associated with at least one flight; optimize the baseline airline schedule in accordance with at least one specified optimization objective to generate an optimized airline schedule; evaluate a robustness of the optimized airline schedule based on an execution of a simulation based process to generate a set of quantitative metrics; and generate a record of the set of quantitative metrics.
Abstract:
A method, medium, and system to receive a baseline airline schedule including details associated with at least one flight; optimize the baseline airline schedule in accordance with at least one specified optimization objective to generate an optimized airline schedule; evaluate a robustness of the optimized airline schedule based on an execution of a simulation based process to generate a set of quantitative metrics; and generate a record of the set of quantitative metrics.
Abstract:
A method, medium, and system to receive actual flight schedule data, including flight details associated with each flight of the actual flight schedule; determine an estimate of at least one of airline operations performance constraints and metrics based on the actual flight schedule data and at least one of business rules and an execution of a simulation-based model; and generate a record of corrected actual flight data based on the estimate of at least one of airline operations performance constraints and metrics and the actual flight data.
Abstract:
A method for determining fleet conditions and operational management thereof, performed by a central system includes receiving fleet data from at least one distributed data repository. The fleet data is substantially representative of information associated with a fleet of physical assets. The method also includes processing the received fleet data for the fleet using at least one process of a plurality of processes. The plurality of processes assess the received fleet data into processed fleet data. The method additionally includes determining a fleet condition status using the processed fleet data and the at least one process of the plurality of processes. The method further includes generating a fleet response. The fleet response is substantially representative of a next operational step for the fleet of physical assets. The method also includes transmitting the fleet response to at least one of a plurality of fleet response recipients.