Abstract:
A method and apparatus for generating consumer electronics using a Universal Box Build (UBB) are disclosed herein. The method may include entering specifications of a product comprised of a printed circuit board (PCB), additional components (such as Central Processing Units (CPUs), memory modules, and heatsinks) into a chassis module, inserting a set of required components in the UBB, and generating the PCB assembly based on the entered specifications, wherein a robot is operatively connected to the interface module to automatically generate a product assembly.
Abstract:
Two substrates are mechanically and electrically coupled together using a combination of a fast cure electrically non-conductive epoxy for mechanical attachment and a slow cure electrically conductive epoxy for electrical interconnects. The two epoxies are selectively applied between the two substrates as a stack, and the stack is subjected to a temperature that is sufficient to cure the fast cure electrically non-conductive epoxy in a short period of time but does not damage the substrates or components coupled thereto. In some applications, the temperature is less than 100 degrees Celsius and the time period is less than 5 seconds. The stack is removed from the heat and the slow cure electrically conductive epoxy continues to cure over a longer second period of time, such as a few hours to a day.
Abstract:
A method and apparatus for generating consumer electronics using a Universal Box Build (UBB) are disclosed herein. The method may include entering specifications of a product comprised of a printed circuit board (PCB), additional components (such as Central Processing Units (CPUs), memory modules, and heatsinks) into a chassis module, inserting a set of required components in the UBB, and generating the PCB assembly based on the entered specifications, wherein a robot is operatively connected to the interface module to automatically generate a product assembly.
Abstract:
A method and apparatus for generating consumer electronics using a Universal Box Build (UBB) are disclosed herein. The method may include entering specifications of a product comprised of a printed circuit board (PCB), additional components (such as Central Processing Units (CPUs), memory modules, and heatsinks) into a chassis module, inserting a set of required components in the UBB, and generating the PCB assembly based on the entered specifications, wherein a robot is operatively connected to the interface module to automatically generate a product assembly.