Abstract:
A radiation detector includes a sensor panel unit, a support table to which the sensor panel unit is attached, and two fixing members. The sensor panel unit includes two sensor panels. The sensor panel has pixels that sense visible light converted from radiation and generate charge. The sensor panel unit has a configuration in which an end portion of one sensor panel and an end portion of the other sensor panel are arranged to overlap each other in a thickness direction. A first fixing member fixes two sensor panels in an overlap region in which the end portions overlap. A second fixing member fixes the sensor panel unit and the support table in the overlap region. The second fixing member at least partially overlaps the first fixing member in the overlap region in a plan view of the sensor panel unit in the thickness direction.
Abstract:
In the radiography system, a camera provided in an X-ray source captures a camera image indicating a usage environment in which an electronic cassette is used. The electronic cassette is inserted into the field of view of the camera. An in-image cassette region of the electronic cassette is detected from the camera image. A cassette ID of the electronic cassette is acquired from the in-image cassette region. The acquired cassette ID is collated with registration information set in a console and a use cassette setting process is performed on the basis of the collation result.
Abstract:
A radiation detector and a radiological image radiographing apparatus capable of improving the quality of an obtained radiological image without causing an additional cost are provided. A first scintillator configured to include columnar crystals generating first light corresponding to a radiation emitted through a TFT substrate is laminated on the other surface of the TFT substrate that has a first photoelectric conversion element, which has one surface from which a radiation is emitted and the other surface from which at least one of the first light and the second light is emitted and which generates electric charges corresponding to the light, and a first switching element. A second scintillator which generates second light corresponding to a radiation emitted through the first scintillator and has different energy characteristics of absorbed radiations from the first scintillator is laminated on a surface of the first scintillator not facing the TFT substrate.
Abstract:
A radiographic image detection device includes: an image pickup unit with plural radiation detection portions arrayed in a two-dimensional form and detect radiation, and that captures a radiographic image; a radiographic image generating unit having plural analog signal generating units that generate analog signals corresponding to radiation doses; a conversion unit that converts the generated analog signals into digital signals; a judging unit that judges whether or not level fluctuations of the generated analog signals are within a predetermined threshold value; and a control unit that controls the conversion unit such that an analog signal, at which it is judged that the level fluctuation is within the predetermined threshold value, is converted into a digital signal, and that controls the conversion unit such that an analog signal, at which it is judged that the level fluctuation has exceeded the predetermined threshold value, is not converted into a digital signal.
Abstract:
This radiation imaging system has a radiation source, a case, and a radiation detection device which is housed in the case, and is equipped with a radiation detector having a conversion unit that converts radiation from the radiation source, which has passed through at least a subject, to radiation image information, wherein a prediction is made as to whether the afterimage phenomenon has occurred in the conversion unit, and if it is predicted that the phenomenon has occurred, at least the conversion unit is moved.
Abstract:
Disclosed is a radiation imaging device configuring a radiation imaging system. Specifically disclosed is a radiation imaging device wherein external force action mechanisms are capable of applying external force to the peripheral sections of a radiation conversion panel, or applying the external force while being laminated on the radiation conversion panel, or pressing the radiation conversion panel against the inner wall of a panel containing unit, which contains the radiation conversion panel, at least in imaging when radiation is applied.
Abstract:
A radiation detector includes a support table in which an attachment surface having an arc surface shape is formed, a sensor panel which has a rectangular plate shape and in which pixels that include TFTs and detect radiation are two-dimensionally arranged, a circuit board, a flexible cable, and a reduction structure. The sensor panel is attached to the attachment surface while being curved following the arc surface shape. The flexible cables connect a curved side of the sensor panel and a reading circuit board and are arranged along the curved side. The flexible cable is bent to dispose the reading circuit board at an angle of 90° with respect to the sensor panel. The reduction structure reduces a bias of a stretching force applied to the flexible cable caused by the curved side.
Abstract:
A radiation detector includes a support table, a sensor panel, a fixing member, and a contact member. An attachment surface having an arc surface shape is formed in the support table. The sensor panel has an imaging region in which a plurality of pixels detecting radiation are two-dimensionally arranged. A first surface of the sensor panel is attached to the attachment surface following the arc surface shape. The fixing member partially fixes the first surface to the attachment surface. The contact member comes into contact with a second surface of the sensor panel which is opposite to the first surface to suppress the lifting of the sensor panel from the support table.
Abstract:
In the radiography system, a camera image of the usage environment in which the electronic cassette is used is captured. An in-image cassette region of the electronic cassette is detected from the camera image. The cassette ID of the electronic cassette is acquired from the in-image cassette region. The acquired cassette ID is collated with the cassette ID of the use cassette set in the console to check whether the use cassette is present.
Abstract:
In the radiography system, a camera image of the usage environment in which the electronic cassette is used is captured. An in-image cassette region of the electronic cassette is detected from the camera image. The cassette ID of the electronic cassette is acquired from the in-image cassette region. The acquired cassette ID is collated with the cassette ID of the use cassette set in the console to check whether the use cassette is present.